TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL 1

Palette: Distributing Tables
In Software-Defined Networks

Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—In software-defined networks (SDNs), the network
controller first formulates abstract network-wide policies, and P s
then implements them in the forwarding tables of network & - .
switches. However, fast SDN tables often cannot scale beyond /,()

a few hundred entries. This is because they typically include < — o — >
wildcards, and therefore are implemented using either expensive “{,\: J..
and power-hungry TCAMs, or complex and slow data structures. — } I\

This paper presents the Palette distribution framework for N
decomposing large SDN tables into small ones and then dis-
tributing them across the network, while preserving the overall
SDN policy semantics. Palette helps balance the sizes of the tables
across the network, as well as reduce the total number of entrge
by sharing resources among different connections. It copes with
two NP-hard optimization problems: Decomposing a large SDN
table into equivalent subtables, andlistributing the subtables such
that each connection traverses each type of subtable at least@n
To implement the Palette distribution framework, we introduce
graph-theoretical formulations and algorithms, and show that
they achieve close-to-optimal results in practice.

S — Table decomposition:

I. INTRODUCTION
Fig. 1. (a) A common setting in which tables are installed atrie&vork
A. Background ingress nodes; (b) The result of applying Palette. Tableslacomposed into

. . . smaller subtables of different types (a.k.a. colors), whdch then distributed
Software-defined networkingDN) in general, and Open- 5¢ross the network. A packet along each path meets each tyebtble at

Flow [1], [2] in particular, provide an abstraction of netiko least once.

devices and operations. This abstraction eases the devefdp

of new network protocols and policies. These protocolsare i o) .))

plemented through the netwodontroller, a single centralized t@bles of limited size, while preserving the semantics ef th

device with a global view of the entire network. The networPN policy. The Palette distribution framework is generic

controller can be seen as a compiler that translates theaabst!n the sense that it does not rely on the exact meaning of

policies provided by network designers into specific rutes e rules, as long as the rules do not determine the routing

the table of each network switch. of the packet. More specifically, the controller applicatio
Previous works typically assumed that the table of eadfould only specify whether the policy is routing/forwangh

switch can hold an infinite number of rules, which makes tHf@nostic or not, and should not deal with the implementation
compiler easy to design. In practice, however, this ass-mmptcomplexity of the distribution across the network switches
does not hold, and the switch table sizes can become! &S IS especially useful when the network topology changes
significant bottleneck to scaling SDN networks. We note th&f €auipment is replaced.

many of these tables are implemented using ternary content-

addressable memory (T_CAM), yvhich i_s e>_<treme|y poweB. The Palette Framework

2? ngs;ggg\}vhefrg:oéiaor;g:zltelgn?tlzfﬁgﬁﬂﬁégrﬂfgﬁﬁzg i We turn now to describing our proposed Palette distribution
each such table to only 750 [3], while handling about 100,03?mework. we Qef|ne an SDN pollcy as a.co'llect|on of rules.
concurrent flows. ach rule consists of gattern, action)pair, i.e. a pattern

) of specific bits in the packet header along with an action to
This paper_lntroduces the Palette framework for d_|str|bgt| t?hke upon a pattern match (e.g. drop the packet or increment
these rules into a network of heterogeneous switches

W] .
L counter of some measurement). For aggregation purposes,
Y. Kanizo is with the Dept. of Computer Science, Technion,féldisrael. don't-care bits, . denoted by #", are allowed in the pattern.
Email: ykanizo@cs.technion.ac.il. ‘ o Therefore, a given packet header may match more than one
D. Hay is with the School of Computer Science and Engineettitahrew rule, and in that case an action is taken according to the
University, Jerusalem, Israel. Email: dhay@cs.huji.ac.il hiah L le. Tvpicall he SDN tabl |
I. Keslassy is with the Dept. of Electrical Engineering, fieion, Haifa, _'g est-pr!orlty rule. Typically, the tables evolveeov
Israel. Email: isaac@ee.technion.ac.il. time (that is, new rules are added and some rules are deleted)

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL 2

In addition, occasionally a switch can send notificationg.(e of small tables (i.e. all colors), so that the resulting isgtt
measurements taken in one of its built-in counters) to theould be semantically equivalent to a single lookup in the
controller. large table.

Palette takes advantage of the fact that the controller hasMe model this second problem in a graph-theoretic manner,
a global view of the network, and therefore, knows the patfrs which the switches are nodes and the links are edges. We
taken by all packets. This allows us to share resources amasgume that all the possible end-to-end paths are knowm to th
different paths in an efficient way, by using the same rules foontroller. Thus, our goal is to assign colors to the nodes su
different paths in any common switch. that each path is minbow path—a path whose nodes include

Fig. 1 illustrates our approach in a common setting usedl the colors. The objective is to maximize the number of
for access control Access control consists of determiningcolors that we can use, and therefore, to minimize the table
whether a given packet is permitted in the network or shoudize residing at each node.
be dropped. It is usually made by a switch, a router, or Although constructing an optimal assignment is NP-hard,
a designated Network Intrusion Detection/Prevention @yst we show that when the network is a tree (which corresponds
(NIDS/NIPS) middleboxat the edge of the netwarlSpecif- to datacenters) the problem is tractable. We then propoge an
ically, as illustrated in Fig. 1(a), some access control wvaluate sub-optimal greedy algorithms, and show that they
performed on all ingress nodes of the network. In an SDhthieve close-to-optimal results in practice.
setting, this typically translates into installing a takbigh all In addition, we also study the multicolored node case where
access control rules in all ingress nodes. However, as showmire than one type of subtable can reside in a single node;
in Fig. 1(b), using our Palette framework, the rules can e show how this additional degree of freedom enhances the
distributed across the network switches. flexibility of our Palette distribution framework.

Note that an orthogonal approach based on cSamp [4] wouldrinally, we evaluate the performance of our greedy algo-
have been to divide the traffic among switches (that is, eagthms, both in dividing TCAMs and in distributing tables
switch deals only with part of the packets), by applying aicross the network.
each switch a hash function on certain packet header fields\we note that dividing the problem into these two sub-

Then, each switch handles a different range of hash valuggeblems is done since both problems are fundamental and

This approach improves the data forwarding, as it reduces #hay be used in other contexts. In addition, we believe that

load on each switch. However, it does not solve our problem,simplifies the presentation and evaluation of our Palette

since each switch should still store the entire table, as thRtribution framework. However, a joint optimization may

partitioning of the traffic does not take the rules into aceou vyield better (yet more complex) results. We leave this joint
optimization to future research.

C. Our Contributions

In this paper, we show how to split the rules across th®. Paper Organization
network, such that each switch will have a smaller SDN table.

Our basic approach is to divide this problem into two se;ezara.[.hen in Section I, we deal with our first subproblem, that

subproplems. . s, we show how the large TCAM classifier can be divided
The first subproblemis to decompose a large table tha . . .

. . . Into smaller TCAMs. In Section IV, we give the formulation

contains all rules into a predetermined number of smalle

tables. We denote each smaller table by a different colgj the second subproblem, which is NP-hard, analyze some

o . .~ Special cases that can be solved efficiently, and presecieeffi
Our decomposition ensures thtdte Palette implementation P Y P

preserves the overall network behavidn particular, it has greedy algorithms for approximating the general case. In
the following two properties ' Section V, we consider cases where more than one color

o]) can be assigned to each of the switches. Finally, Section VI
« Order-oblivious: The order in which the smaller tables, qyides experimental results.

are accessed does not change the global action of Phe
network.
« Semantically-invariantThis global action of the network Il. RELATED WORK
is the same as the one taken when using the initial singlesoftware Defined Networking (SDN) has become an impor-
large table. tant paradigm in contemporary networks. Its key concegt lie
Naturally, this implies that not all actions can be deconggosin the management of the entire network as a unified abstrac-
and distributed: for example, a forwarding or a routing @tti tion (e.g., in a network controller), and the remote congbl
(e.g., “send the packet through paf) must be taken in the network devices (namely, its switches and routers)utino
its original switch. We assume that the controller appiarat open protocols (such as OpenFlow) [7]. In recent years, SDN
specifies whether the action is safe to decompose or not. Irteichnology has been widely deployed in real-life largdesca
dentally, this subproblem is also useful in other contestish networks, e.g. Google’s G-scale network [8]. Switches and
as achieving parallelism and power-efficiency in TCAMs [5];outers that support SDN/OpenFlow are now offered by a large
[6]. number of vendors (e.g., [3], [9], [10]).
After obtaining a set of small tables (or colors), tecond One of the major challenges in SDN is to develop a
subproblenis to ensure thadach packetraverses all the types programming language for its software development. On one

We start with the background on related work in Section 1.

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL 3

hand, this programming language should be sufficiently flex- 1ll. ORDER-OBLIVIOUS TABLE DECOMPOSITION

ible and rich to allow new network applications, but on the this section analyzes two approaches to dividing a large

other hand, it should be simple and modular to reduce devglye jnio.. subtables: th@ivot Bit DecompositiofPBD) and
opment and debugging times. Frenetic [11] is a prime examm?e Cut-Based DecompositiofCBD)
of such a network programming language that gives hight-leve '

abstractions to the network programmer. For example Gt

systematic updates [12] and task composition [11]. Perhafds Decomposition Rules

the most closely-related work to ours is the extension of Before starting, note that we only divide rules that corre-
Frenetic to allow policy transformation of rules acrosstie¢- spond to policies which arenarked as safe to dividéThe
works [13]. The authors developed a complete and sound gt of the rules remain in the corresponding sub-table, and
of axioms to allow semantically-preserving rule-rewiitim a will be re-composed with the rules assigned to that table
single switch or in a chain of switches. Our paper complemerdfter decomposition. There is a large body of work of how to

this work by providing a specific algorithmic framework incompose several policies in one table (e.g., using a Cartesi
which such a rewriting system can work, and also shows h@yfoduct of the rules [27], [28]).

to spread the resulting rules across the network. An additio Hence, we are left with an arbitrary table that is safe to

key aspect of our paper that can be useful for Frenetigyide. We assume that this table must be able to match all
is our order-oblivious decomposition, which facilitateéset possible strings. For this, we distinguish betwetefiault and
distribution of subtables across the network. non-defaultrules. The default rule consists dbn't-care bits
Another approach for distributing table rules across thshly, and it uses a default blank action (e.gpeamitaction in
network is DIFANE [14]. In DIFANE, non-overlapping flow ACLs). The non-default rules are all other rules in the table
ranges are allocated using a decision-tree based algoriti@iearly, if a default rule exists in the original table, it yae
Then, each such range is assigned to a different predetdmiplaced only at the end of the table. To follow our convention,
subset of the switches, called authority switches. Folowi after the decomposition we add a default rule automatidally
that, rules are installed to these authority switches a@egr each of the resulting tables.
to the corresponding flow range. We further note that after decomposing the original table,
To assure that each packet is matched against all releveiy resulting tables may not be optimal. Therefore, it is-pos
rules, ingress switches redirect the packets to the canesp sible to applylogic minimizationon the resulting tables using
ing authority rule. If some rule is matched, a cache rulgff-the-shelf solutions developed in the context of TCAMs
is generated using a technique described in [15], and th@ng. [29]-[31]).
installed in the ingress switch, such that future packeimfr The correctness of the decomposition implies that each
the same flow can be managed instantly in the ingress routgfing that matches a non-default rule in the original table
Our approach avoids the management and redirection ovfast match a non-default rule in exactly one of the subtables
head by assuring that each packet is matched against@fd the default rule in the other resulting tables). Moggpv
possible rule in the path it traverses. Further, it avoids ddtrings that match the default rule in the original table smu

plications of the rules to the ingress routers, exploitieitdr also match the default rule in all subtables.
the available space in the switches.

While both DIFANE and our approach do all rule processin)) .
in the data plane, a recent paper proposes to combine the fieP1VOt Bit Decomposition
processing both in the data plane and control plane [16]. TheThe first method, calledPivot Bit Decomposition (PBD)
main approach is to partition the rules into non-overlagpirworks by iteratively decomposing one table into two equiual
sets of rules, and then to distribute it to both the switches, (tables, thus increasing the total number of tabled by
data plane) and the hypervisors (i.e., control plane), shah This iterative decomposition is done by selecting piheot
the volume of flows need to be redirected from the data plahé& (equivalently, one column) in the table, and splitting the
to the control plane is minimized. rules into two sets: the first table holds all rules in whick th
Finally, we note that splitting the workload between theivot bit is 0, while the second table holds all rules in which
switches in a coordinated network has been proposed in the pivot bit is1. Rules in which the pivot bit is “don’t care”
past in many contexts. Such contexts includes traffic emgine(** ") are rewritten as two complementary rules: one in which
ing [17], network diagnosis [18], [19], intrusion detectif20], the pivot bit is replaced by (and therefore, is part of the first
and traffic monitoring [4], [21]-[26]. However, these siaduts table) and another in which it is replaced byand therefore,
are not directly applicable to our case. For example, cSahp [s part of the second table).
is a generic framework for network measurement, where eachNote that while PBD decomposes the table along certain
flow is monitored only in one of the network routers. It usebits like previously-known methods [5], [6], it does not pre
a hash function with a certain distribution at each routeletermine some” pivot bits and then decomposes the table
to determine whether the current router has to perform theo the corresponding” tables. On the contrary, it adds a
measurement. Since the hash functions are orthogonal to sirgyle new subtable at each iteration. Therefore, the réiffie
monitoring rules, it implies that each such router shoulttihosubtables may have resulted from different sets of pivat bit
the entire monitoring table (but only access the table on aNaturally, the efficiency of the decomposition depends on
subset of the packets). the joint selection of the table and of the pivot bit at each

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL 4

0/]1/2]3 4|56 differ from the rules in7; by the pivot bit. LetT, be the table
¢ (*|0]1]0|*x]0]O0 with value b in the i-th bit of the non-default rule. Lef/ be
w2 | O | *x |1 |*|*x]*]0 the value of thei-th bit of 4, thereforeh cannot match any
w3 [+ |1 |=*|= 1|01 non-default rule in7}_, and hence a contradiction.
pq |11 |1 | x]1 | |~ We next show that at least one table returns a non-default
w5 | 1|1 |*x [O] |* |« rule for h. Such a table can be found by traversing the
e |11 000|101+ decomposition tree according to the value of the pivot bits
oy I N A A B N in h. At each nodél’, whose pivot isi, we check the-th bit

in h and go to eithefly or 77 according to this value; the
process is stopped when reaching a I&af Let I be the set
of pivot indices along the path betweé&r and the root of
iteration. Our goal is to greedily minimize the maximunthe decomposition tree. Note that by construction, theevalu
table size among all the small tableBherefore, we always of these|I| bits in » and in all non-default rules of” is
decompose the largest table. The pivot bit is then selectedthe same. Assume thatmatches some rulg in the original
minimize the size of the largest table among the two resultinable, letl, be the set of indices in this rule that are and
subtables. let Ip; be the set of indices in this rule that are eitleor
Specifically, forb € {0,1,*}, let n;(b) be the number of 1. Sinceh matches this ruleh was carried on td” for all
bits with valueb in the i-th column (that is, the number of pivots in I N Iy;, and was duplicated (with the same action)
rules whosei-th bit is). Then, the pivot bit is: for all pivots in I N I,. Thush matches the rule also if’.
pivot — argmin (max {n:(0) + ni(*), ms(1) + na(*)}) Note that s_ince_this claim is about the s_:em_antics of the
f ! EEEA ¢ rules, the claim still holds even when considering the logic
= argmin (n;(*) + max {n;(0),n;(1)}) (1) minimization at each decomposition step, since logic mini-
i mization must preserve the semantic of each table. =
Finally, note that if after the decomposition and possiblyt The next lemma complements Lemma 1 and shows that
logic minimization, the maximum table size is not reduced, wcorrectness is maintained when matching the default rule:
refrain from decomposing the table and move to the next.tabLeemma 2. If the default rule is returned when applying a
The process ends either when we readables, or when all :

possible decompositions do not result in table size rednocti packet header on the original table, then all tables return
the default rule.

Example 1. We demonstrate our decomposition using the e . .
. - L Proof: It is straightforward since no rule matches the
example table depicted in Fig. 2. Assume we want to divide the . .
: . . packet headeh in the original table, |

table intoc = 2 partitions. We disregard the default rule), L

. 4 o . ¥ . The next theorem establishing the correctness of PBD
and choose bit number 1 as the pivot bit, since it minimizes, i mediately from Lemma 1 and Lemma 2:
the expression in Equation (1). Rule, has * in bit 1, y '
and therefore it is duplicated to rule), = 001***0 and Theorem 1. The PBD scheme preserves the semantics of the
¢y = 011x*x 0. After the division, the rules, 5, and ps original table, no matter the order in which the tables are
are assigned to the first sub-table, while the rulgs @3, 04, accessed.
and ¢; are assigned to the second sub-table. We also nee
to add default rulep; to both of the resulting sub-tables, SO
their final sizes would be 4 and 5, respectively.

Fig. 2. An example rule-set of an SDN table.

qu point out two main drawbacks in the basic PBD scheme.
irst, the basic PBD scheme divides the table at each iberati
so that the maximum size of the resulting two subtable sies i
We next show the correctness of our decomposition and timénimized. Therefore, the sizes of the resulting two sulesb
fact that it is order-oblivious. after each iteration tend to be almost equal. As a resulthwhe

Lemma 1. If a non-default rule is returned when applying e is not a power of two, it is expected that the partition sizes

packet headefh on the original table, then, after the PBD isWOUId beimbalanced

. . To solve this problem, we generalize the PBD scheme in
applied, there is exactly one table that returns a non—dlefatihe following way: Given the target number of subtables
rule for h; all the other tables will return the default rule. '

we first find the largest integer such that2? < ¢. Then, we
Proof: Recall that packet headers are binary strings (théxd a pivot bit that attempts to divide the table such that the
is, they do not contair’s). In addition, notice that our decom-ratio between the resulting table sizes will b&(c—27). 1
position procedure induces a binary tree structure amoag e recursively use this generalization of PBD on each of the
tables, where each node in the tree represents a table, whesesubtables, aiming to decompose the first subtable2hto
two descendants are the tables resulting in the decompasitismaller subtables, and the second subtable dnt®2? ones.
the root of the tree is the original table, while the leaves of Another potential drawback of PBD is reflected in the
the tree are the subtables. following result, which exhibits an example in which the
Suppose that two non-default rules are returned from two
different tablesTy, T}, and let7’ be the deepest common IFor example, forc = 7, the goal is to have two tables, one holding
] approximately 4/7 of the entries and the other 3/7. Thus ttie between the
ancestor of the tables. Let be the pivot bit selected in apjesis 4:3, while the basic PBD scheme aims to achieve altibetween
decomposingl”. Thus, all rules (but the default rule) @ the tables.

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL 5

largest resulting subtable is of si2é—c+1, while the optimal
decomposition would have resulted drtables of sizeN/c.

Theorem 2. PBD may result in a decomposition whose largest
subtable is asymptotically: times larger than the largest
subtable in the optimal decomposition.

1 2

Proof: Our counterexample is based on rules that do not
contain* bits at all. Since there is no dependency between
the rules (each rule matches exactly one key), any patiitiion
of the rules intoc sets of sizeN/c is a valid decomposition.

On the other hand, consider the set of rulgs, =
101w == i€ {0,...,W — 1}}, whereW is the width of
the table. Namelyy; is a rule whose all bits are 1 except the e replace the rule with’ new rules by replacing the bits

i-th bit, which is set to 0. Assume our PBD chooses the bif§ . . : I
(i io_1} during its execution. The resulting subtabIeWIth a binary enumeration of possible combinations of Os and
Ly-eeyle—1 .

will be ¢ — 1 singleton tables{{s; },...,{z:. .1}, while 1s. By dgfi_nition, this operation QOes not change the se_qsanti

the rest of theV — ¢ + 1 rules will rtles’ide in oriéltat,)le. n of the original table. However, it reduces the connectiafy
the dependency graph, facilitating the graph partitioning

C. Cut-Based Decomposition The next theorem shows that CBD is in fact a generalization

Fig. 3. The dependency graph and cut of the table in Fig. 2.

We now offer a second approach to decomposing the tab?é,PBD'
calledcut-based decompositid®BD). This decomposition is Theorem 3. Using the above-mentioned edge breaking and
based on representing the set of rules diracteddependency node expansion operations, CBD can exactly emulate PBD.
graph. - .

As illustrated in Fig. 3, which shows the dependency graph Proof: When PBD partitions a table into two tables
of the table in Fig. 2, the nodes in this graph represent tH§N9 Some pivot bit, it duplicates the rules withdan't-
rules. Moreover, there is an edge from nadéo nodew if care () value in the corresponding bit into the two resulting

and only if ruleu has higher priority than rule, and there is SuPtables, and replaces the correspondingalue by 0 and
at least one key that matches both rules. Namely, the edged of €SPectively. This corresponds to a rule expansion in the
the graph represemiependenciebetween the rules. Our goalCBD- This way, CBD can mimic the exact steps of PBD.
is to decompose the graph, which corresponds to the origimiic® @t each step in PBD, no packet header maiches two
table, into component subgraphs, which will correspond fHIes 'from different subtables, C.BD can partition the large
the resulting subtables, such that there are no edges hetwi@P!e into exactly the same resulting tables as the PBOE
the components. That is, no key matches rules in differentWe next discuss how we practically cut the graph into
components. components. First, the problem of partitioning a graph tnto
First, since all rules match the default rule, and it is adw €dual-size components and minimizing the weights of edges
to match the default rule in all subtables, we omit the nod¥nong these components is known to be NP-hard [32]. Our
corresponding to this default rule in the graph. problem is even more general, in the sense that in some cases
Second, we assign a weight to each edge. The weigh¢ need to consider the sum of weights (for edges in the cut
corresponds to the cost bfeakingthis edge: an edge can behat are destined for different nodes) and in some cases we
broken by changing the rules in such a way that no depende§gd to consider the product of weights (for edges that are
remains between the rules, and the semantic is preserved.destined for the same nodes). Moreover, we may want to first
Specifically, letb* denote thei-th bit of nodew. For any €xpand some of the rules.
nodew, define the following set of dependency bits;, , = In practice, we propose a greedy algorithm that solves this
{i | bY = » andb? # = }. The weight of the edge betweenproblem iteratively. At each iteration, we first try to p&dn
node u and nodev, denoted byw(u,v), is |C,,|—1. The the dependency graph into equal-sized components, and
weight w(u,v) corresponds to a possible way of resolvingninimize the weights of edges among these components. For
the dependency betweenandv by addingw(u,v) nodes to this task, we use METIS [32], a tool to approximately paotiti
the graph: for each bit in C, ,, we can write a rule that is graphs. Then, given the resulting partitioning, we evaugt
identical tov, except thei-th bit that is replaced by — b¥. and decide whether to expand one of the rules, and then go
These rules do not have a dependency within addition, to the next iteration, or to finish by breaking all cut-edges.
each key that matches in the original rule-set will match For instance, the wavy line in Fig. 3 depicts the cut of the
at least one of these rules. Note that when removing a singlependency graph. After adding a default rule to each sléytab
edge from the graph, we create a new graph: edges that toiidigsults into two subtables of size 4 rules each (comparing
nodew in the original graph might be duplicated to the newo size 4 and size 5 in Example 1).
|C..»|—1 nodes; the weight of these duplicated edges can onlyThe decision whether to expand one of the rules or to
decrease. finish by breaking all cut-edges depends on the quality of
Another operation that we also allow in this scheme is the partitioning. Namely, in case that the total weight o th
node expansigrthat is, given a set of * bits in some rule, edges in the cut exceeds some parameatgr we look at

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL 6

only the switches and links that belong to at least one path in
P. Fig. 4 illustrates the above definitions.

Recall that we aim to maintain full coverage of the original
table semantics when dividing the work among switches.
Informally, we would want tocolor each switch in one of
possible colors (or with no color), subject to the constrain
that each path must contain all colors. This would help
us to divide the table among switches, so that each switch
would need approximatel% of the entire table. Formally, the
problem is defined as follows.

Fig. 4. lllustration of the model. Networki = (V, E) has vertex set Definition 1. Given a networkG = (V, E), a flow path set
V= {vi,...,va} for the switches, and an edge $6t= {e1,....e5} for — p and a number of colors, the (G, P,c) RAINBOW PATH
the links. There are three paths in the path Bet= {p1,p2,p3}, and, for . decid heth h . .
example.S (p1) — {01, 02} and L (p1) = {ex }. Finally. G| p is the same PROBLEM s to decide whether there exists an assignment
asG but without the linkes, which does not belong to any of the paths. V' — {1,1,...,c}, where L corresponds tano color, such
that each patlp € P has at least one node of each cotor.

the destinations of the edges in the cut, and pick a vertexWhIIe the (G, P, c) RAINBOW PATH PROBLEM is defined

whose sum of incoming cut-edges’ weight is the Iarges"il.s adecision problemin practice,our goal is to maximize
Notice that the number of colorsis clearly at most the

Then, we expand the rule corresponding to this vertex, thus . o
eliminating all dependencies. Furthermore, since METI8sdo ength of the shor_test path iR, which is in turn bounde_d by
not necessarily return a perfectly balanced partition, eak| " Th_us, the maximum number o_f colors can be obtained by
at the ratio between the size of the largest component a%Plymg the decision problem W'.th any number of colers
the target size (that is, if a perfectly balanced partiticouid Up to the shortesF relevant path size.

have been produced). If this ratio exceeds a certain paeame In_ _the appendnf, we show that for general graphs, the
ro (namely, the partition is poorly balanced), we will try to ecision pr_oblem |sI_\lP-hard even for two colors. _We now
break the largest component by expanding a rule within th%k?tam efﬂqent solutions for special graph topologiesyed
component. Naturally, a good candidate for such an explansfbS heuristics for the general case.

is a rule that has few bits (e.g., up to three) and many

intra-component incoming edges (e.g., the one with theekirg A. The Rainbow Path Coloring in Trees

number of incoming edges). Nowadays, OpenFlow-equipped networks are often de-

Theorem 4. The CBD algorithm stops. ployed in data centers, where the network itself has a regula
.] . . structure. A prime example of such a topology idree a
Proof: At each iteration, one rule is expanded using %Ily connected graph that has no cyclés.
least one bit, that is, in the resulting table there is attleas |, some cases. there is also a restriction on the relevams pat
onex less. A table with not even one has a corresponding ihat should be considered; e.g., assuming all paths otégina
dependency graph with no edges. Therefore, it can be eagilym or are destined to a single node.
partitioned intoc equally-sized partitions with cut edge of |, his section, we first tackle these single-source (equiva
|

weight 0. lently, single-sink) trees. Our results are slightly moemeral,
as they require that only the projection of the paths on the
IV. THE RAINBOW PATH COLORING PROBLEM original topology is a tree. For example, if all paths are the
) _ . shortest possible, a single-source (single-sink) setingys
After showing how to decompose the initial table intqq g 5 tree (a.k.a. the shortest-paths tree). We show desimp
subtables, we now turn to shoow to spread the subtables, 5jig coloring of sizes + 1, wheres is the shortest path size.
in the network . . In this coloring, the color is simply given by the distance to
We model the network as a directed gra@gh= (V, E) with o single ingress (or egress) switch.
a vertex sefl” and an edge seb, whereV = {vy,...,v,}
represents the set af switches andE = {elv . .’em} the Theorem 5. Given a networkZ, and a flow path seP such
set of m links. As a first step, we consider an homogeneo(igat all paths originate from or are destined to a single node
network where all switches are identical, and thereforeehagnd follow the shortest-path scheme, then there is a valaf co
identical constraints on the table size. We will relax thigssignment with s+1 colors to the(G, P, c) RAINBOW PATH
assumption in Section V. PROBLEM, wheres is the shortest path size iR. Furthermore,
Let P = {p1,...,ps;} be the set of all flow paths in " can be computed i® (m + n) time.

the network. For each flow path;, S(p;) denotes its set of 2This last condit the oath be formally wiitten adofas. Let
: ‘ . . is last condition on the paths can be formally written asoves. Le
SW't.CheS an_d[’(pl) denotes its set of links. 7:2V — 2{L.1c} denote the extension of to a set of nodesy(V') =
Finally, given a graphG and a set of path’, we de- {c|v eV’ y(v) = c}. A valid assignmenty implies that for all pathg €

P

note by G|p the projection of G over P, namely G|p = ,Sél,--.éc} QW(S(pr)])- i oo, Exton ot
. . ome datacenters havdad-treetopology. Extending our results to fat-tree
<UpeP S(p), Upep L(p)> is the subgraph of+ that contains s part of our future research.

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL 7

Proof: Without loss of generality, assume that all paths inAlgorithm 1: Pseudo-code for the-GREEDY algorithm
P originate from a single source, and denote byi(x, y) the Input: node setl/, path setP

distance in edges between nad@nd some nodg. Let vy be Output: a valid color assignment, number of colors:
the following assignment function: for eaghe (J,.p S(p), 1 c=0;

) = { do,y)+1 d,y)<s 2 sety (v) = L forall v e V;

. 3 while V # () do
€ otherwise . PPV =0
where | indicates that no color is given to the node, and Search = TRUE ;
therefore, no table should be installed at that node. Noliae ¢ while Search do

~ can be computed i®(m + n) time using the Breadth-first 7 Vo = ArgMaXyc vy 7| <,
search (BFS) algorithm [33] originating from - ST .
Consider a patlp € P, which starts at: and follows a {prm Sp)#bpeP } }
shortest-path scheme. Thu#(;p) contains nodes of increasings PO = {p|f/ NS(p)#0,pe P} ;
distances until the length of, which is at leasts. Thus, V=V\VO; V=V U{V); P =P\ P
F(S(p)) ={1,...,s+ 1}, and the claim follows. I Search = (P' # 0)and(V° # 0) ;

Next, we deal with the more general case in whighy is

a tree. In such a case, we show a valid coloring wWight 1] 1 if P’=0 then

colors, wheres is the shortest path size iR. 12 c=c+1;
13 sety(v)=cforallveV’;

Theorem 6. Given a network and a flow path sef” with 14 V=V\V";

a shortest path of length, if G|p is a tree, then there is a5 else

valid color assignment withj 5 + 1] colors to the(G, P,c) 15 L V=0

RAINBOW PATH PROBLEM It can be computed i® (m + n) L

time.

Proof: Let ¢ = [5 + 1], and pick an arbitrary node <

S(P). Consider the following color assignment corresponds to a new coloGREEDY continuously picks

uncolored nodes one by one, until each path contains at least
v(y) = (d(x,y) =1 mod c)+ 1. one of the picked nodes in this iteration. In such a case, the

Note that, by definition, the values afare in{1,...,c}. v nodes picked are colored with a new color, and the algorithm

can be computed using a BFS from nadi O(n +m) time. continues to the next iteration. If at some iteration, evitera

We next show that each path contains all the colors. COtpﬁi_cking all uncolored nodes, there is at least one path thes d
sider a pathp € P, and lety € S(p) be the node with not contain any of the picked nodes, then those nodes remain

minimal distance tar. Since G|p is a tree, for each other uncolored (L), and the algorithm stops. Note that, in any case,

nodey’ € S(p), dy,z) = d(z,y) + d(y,y') (otherwise the algorithm never stops in the first iteration, that ishitays

there is a path betweeyl and z that does not go through succeeds to color the nodes using at least one color.

y, implying that there is a cycle i|p). Let p1,po be the We next present two variants of this algorithm, which differ

division of pathp into two paths:p, starts in th7e first node in the way the nodes are selected at each iteration. In the firs

of path p and ends iny, p» starts iny and ends in the Variant, which we calll-GREEDY, at each choice, we pick the

last node of patlp. Without loss of generality, assume thaftodev that maximizes the number of pat_hs that contaiput

p1 is longer thanps; thus the length ofy; is at least[] do not contain the new color. The following theorem captures
1 2 B . . - .

edges, implying thatS(p)| > [+ 1]. Furthermore, since e time complexity of this algorithm:

there is only a single .simple path between each two nodesTiReorem 7. 1-GREEDY runs in O (n2 . f) time complexity,

the tree, the set of distances between nodeS(m) andy wheren is the number of nodes anflis the number of paths.

is {0,...,|S(p1)|}, immediately implying thaty(S(p1)) = _ . .
((i+d(z,y)—1 mode)+1 | i€ {0,....|Sp)[} = Proof: When we pick a node to color, we first need to

{1,...,¢}, and the claim follows. consider all other remaining nodes to ensure that this nede i
Another special case where all paths are of length 2 {4 one which belongs to the largest number of paths; each
considered in the appendix. such comparison takes at mgssteps (countmg all the paths).
Hence, the total number of steps required to choosenall
. o nodes, isf- (n—1)+(n—2)+...+1)=0n*-f). =n
B. The Rainbow Path Coloring in General Graphs The second variany-GREEDY, generalizes thé-GREEDY
Since the (G, P,¢) RAINBOW PATH PROBLEM is not algorithm by considering, at each step, a set of up tmdes
tractable in general graphs, we present a greedy heutistic t(instead of a single node). It chooses the set of nodes that
might yield a suboptimal solution. Yet, our simulations who maximizes the number of paths for which there is at least one
that in practice the margin of error is on average witBia node in the set.
(see Section VI). The next example shows an execution IefsREEDY and
More specifically, ouGREEDY algorithm (see Algorithm 1 an execution oR2-GREEDY that differ in their outcome. This
for pseudo-code) works in iterations. At each iterationjalth demonstrates the tradeoffs in fixing the parameter

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL 8

Example 2. Consider the example in Fig. 4. We first run
GREEDY. At the first iteration, nodes,, v, and vz belong to
two paths; assume thdatGREEDY first picksv; and colors it
in the first color. Then, in order to colops, it picks v, and
colors it in the first color as well. Note that all nodes of the
first path p; are now colored, implying that any additional
iteration will fail, resulting in a valid coloring of only om
color.

In contrast,q-GREEDY with ¢ = 2 first picks nodes, and
vs, since all three paths traverse through either one of these
nodes. Thenpl and vy can be colored with an additional Fig. 5. A network with no valid coloring to th¢G7 P, C> RAINBOW PATH
color, resulting in a valid coloring with 2 colors. PROBLEMWIth ¢ = 2

The following theorem is a simple generalization of Theo-
rem 7: V. MULTICOLORED SWITCHES

Theorem 8. ¢-GREEDY runs inO (n4*! - f) time complexity,

wheren is the switch set size anflis the path set size. Up until now, we have considered tH€, P’ c) RAINBOW

PATH PROBLEM where asingle color is assigned to each
switch. However, in practicewe may want to assign more
than one color to each switch
The motivation for such an assignment is three-folded.
Although the (G, P,c) RAINBOW PATH PROBLEM is NP- First this would facilitate the implementation ohateroge-
hard, it is possible to compute the optimal solution for Smaheous software-defined netwpik which nodes with a larger-
instances of the problem. In this section, we present @Bpacity table can be assigned multiple colors.
algorithm, based on dynamic-programming, that pracicall gecong; there is additional degree of freedom in the prob-
solves the(G, P, ¢) RAINBOW PATH PROBLEMWith projected o ‘implving that there are more feasible colors assigraen
graphs of up to 17 nodes. Note that each (isomorphic) c@ori, see this, consider Fig. 5, which shows a ring graph of size

corresponds to a specific partition of a set wflabeled 3, \yhich each path consists of a single edge. The only valid
elements [34]. The number of possible partitions:@lements ¢ tion of the(G, P, ¢) RAINBOW PATH PROBLEMis when all

';;?eel;ll'(tﬁo'.aiut?sun;b:;/'e"‘g:o(:frza\’cﬂu; Ig;t;gl(;I:Spiggirgﬁ'l;esSWitChes are colored with the same color. However, the graph
' can be colored in three colors, when each switch is allowed to
is intractable in a reasonable time. The main motivation %, colored with two colors (namelyvr) — {1,2} ; 7(vs) —
Fwo-folded. First, it may be satisfactory for some read}lif{273}w(vg) — [3,1}). Specifically, we are interested in the
instances of th&G, P, ¢) RAINBOW PATH PROBLEM SecoNd, a1 of the number of colors in each switch to the total numbe
this algorithm is used in Section VI as a baseline for evaigat ¢ ~qiors. In this example, the ratio % implying that each
the performance of thé-GREEDY andg-GREEDY. switch should hold approximately two thirds of the table (as

Our algorithm works in two phases. In the first phase, WSoposed to the entire table in tH&, P,¢) RAINBOW PATH
find a setS of all subsets of the switch set that have thgrog em solution).

following property: Given a subsete S, coloring all switches

in s with a specific color results in coloring all paths in thE?S in cases where the graji contains onlyfew very short
p"’?‘h set: We also make sure tha_lt for aif S, the subses is paths while other paths are relatively long. This is because
minimal in the sense that there is no subsetsdhat has the in the (G, P,) RAINBOW PATH PROBLEM, the length of the

same 'property. . i shortest path is an upper bound on the number of colors that
To find the setS, we start with a set of: singletons. Then, can pe used. Therefore, it also determines a lower bound

at each step, for each of the subsets so far, we try t0 adgQihe size of the table stored in the switches. This implies

new switch with index larger than the largest switch indeya; switches on longer paths, which can potentially share

of this subset. If adding a new switch makes the number gfeir taple with more switches, will still need to store agkar

paths thgt are.colored Iar_ger,. then .the.new subset is saveddge |n that case, it is appealing to assign multiple cotor

the next iteration, otherwise |t' is dismissed. Also, if th®wn ¢\ itches on shorter paths (resulting in relatively lardges),

subset covers all paths, then it is addedSto while the rest of the switches are assigned only with few
Next, after having computed the sgfwe go to the second ¢ojors, which correspond to smaller tables.

phase of our algorithm, where we find the maximum size We now formally define the multicolored problem.

set of disjoint subsets %, whose size corresponds to the

optimal number of colors that can be used in the origin&8lefinition 2. Given a networlG = (V, E), a set of paths, a

(G, P,c) RAINBOW PATH PROBLEM. We note that the secondnumber of colors:, and for each node; a maximum number

phase is essentially an instance of theximum set packing d; of colors that it can accept, th&7, P, ¢, d) RAINBOW PATH

problem, and can also be solved using a dynamic programmimgOBLEM is to decide whether there exists an assignment

technique. VvV — 2{L¢} sych that each patlp € P has at least one

C. An Optimal Solver

The third motivation for assigning multiple colors to a node

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL 9

node of each color, and no node has more thani; colors? iy ; ; ; ; e~
Note that the fraction of the original table that is stored it~ osf_ ~~__ T ocep
node v; is approximately|y(v;)|/c, assuming that the table £ T *_bitgroups
decomposition algorithms (Section 1Il) are efficient. & 061
Clearly, as the(G, P, c) RAINBOW PATH PROBLEM is NP- o4l
hard, so is thgG, P, ¢,d) RAINBOW PATH PROBLEM. How- '

ever, we can reuse our results on & P, ¢) RAINBOW PATH 2 3 4 5 6 7 8
. number of partitions (c)
PROBLEM using the following reduction: Given the instance
of the (G, P, c,d) RAINBOW PATH PROBLEM, we split each Fig.6. Evaluation of the quality metric of the PBD, CBD, andemiiterative
nodev; into a chain ofd; nodes, and make each path that go@@Ol’lthm that selects all pivot bits at once [5], [6]. Theun is a synthetic

throughu;, to go through the whole corresponding chain. Thefi!® S&*
we get an instance of th&s, P,¢) RAINBOW PATH PROB 1 ‘
LEM that corresponds to the origind(=, P, ¢, d) RAINBOW T - ______C
PATH PROBLEM Note that in the(G, P,c) RAINBOW PATH ool T A
PROBLEM, it is possible that a node remains uncolored. Thi :E '
corresponds to the case where, in the original problem, tt = oslh
number of colors assigned to some nades lower thand;. 77 7223
0.7 : : : : :
2 3 4 5 6 7 8

VI. EXPERIMENTAL RESULTS "
number of partitions (c)

We now turn to evaluating our algorithms. We first check
the decomposition algorithms (Section I1l) and then thdetabFig- 7. Quality of partitioning of the PBD and CBD using a bemark rule
distribution algorithms (Sections IV-V). set

A. Table Decomposition of 2, the quality of PBD may drop significantly, while CBD
qemains stable. Such a case is shown in Fig. 7.
However, when the dependency graph of CBD is dense,

We define thequality of a table decomposition :':1IgoritthBE|_?_I gari/ai:]glw Zoorarr]((ejgrzjlts(.)n'l(;hlrs II: _(:]u;eh;o_:n 'tn;;[:b";gysolz
as the ratio between the number of rules in the original fab ' Y, expanding ve | inpu y resu

and the product of the largest resulting subtable size by ﬂgeagmflcantly worse partitioning (where we would expect

number of subtables The quality is therefore between 0 an ec; Z?IV;O% pﬁrt:ctllj?grlggwag ;eiﬁsaoazvg?ggmisthtzgforr?)thZSn rll)J le
1, where higher quality values implies a better decompmsiti . P ” ' . P y
'gplementlng our own graph partitioning mechanism.

Specifically, a quality of 1 means that the largest subtab
size has exactly an ideal fractiaryc of the number of the
original rules. Note that this quality can only be used tB. Table Distribution
compare among different algorithms for the same value of |y this section, we evaluate the greedy algorithms for the
c. Furthermore, it is most likely that the quality is decmhsesingle-color case, as introduced in Section IV.
whenc is increased. To analyze their performance, we produce random instances
We compare PBD and CBD algorithms withbét groups of the (G, P,¢) RAINBOW PATH PROBLEM in the following
algorithm based on [6]. Through an exhaustive search, thignner: given a number of switches and a number of
algorithm selects thdog, ¢ pivot bits that maximize the paths f, we add each switch to each path with probability
quality. Thus, it only works for values af that are powers of pn independently of the other switches or paths. Note that
2. for a given path, the actual order of switches within the path
Fig. 6 shows the quality of the three algorithms as thgng how they are connected to each other (namely, the exact
numberc of partitions grows. For the simulations, we haveenwork topology) is irrelevant to théG, P,c) RAINBOW
created 100 random logically-minimized rule-sets with #8 b pa1H pPrOBLEM The number of switches in each path of our
and 30 rules each. PBD slightly outperforiisgroups except jnstances follows a Binomial distribution with parameters
when ¢ = 2, where they perform similarly. CBD clearly gnqp,,. Also note that the length of the shortest path is an
outperforms both over the entire range. upper bound on the size of a valid coloring. We note that these
We also evaluated PBD and CBD with the twelve standaggndom instances assume, among other things, independence
classification benchmark rule-sets of ClassBench [28]}.[35 petween paths, which is not the case in real-life networks. O
When the dependency graph of CBD is relatively sparsgiyre research includes evaluating the networks undétifea
PBD and CBD usually display a quality between 0.7 to 0.9%etwork topologies.
for various values of. Note that forc that is not a power Fig. 8 shows the average size of the valid coloring obtained
4Formally, in this casey (V') = {c|v € V', c € v(v)}. A valid assign- by our .LGREEDY’ 2-GREEDY, an.d 3-GREEDY algprlthms, as
ment~ implies that for all path € P, {1,...,c} C 7(S(p)) and for each @ function of the shortest path in the random instance of the
v €V, [y(v)] < d;. problem. We ran 10,000 random instances of the problem.

We first consider the PBD and CBD algorithms for deco
posing tables, as presented in Section .

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL

()]

number of colors (c)

[e2]

shortest path size (s)

(@) n =10, f =10, p, = 0.8

10

()]

)]

normalized # of colors
N

shortest path size (s)

(@) n =10, f =10, p, =0.8

= : 4
) - —q=1 = _g
25/ ——qg=2 == S
8 ,|l=—a=3 e *
B ks
T N
Q
g3 £
2 g

2 1 1 c 2 L

3 4 5 6 7 3 4 5 6 7

shortest path size (s) shortest path size (s)
(b) n =20, f =10, p, = 0.4 (b) n =20, f =10, p,, = 0.4
Fig. 8. Evaluation ofl-GREEDY, 2-GREEDY, and 3-GREEDY, for various Fig. 10. Evaluation ofl-GREEDY, 2-GREEDY, and 3-GREEDY for the

values ofn, f, and P,.

% of optimal solution

multicolored switch case, with various valuesf f, and P,.

coloring size found byi. This corresponds to th&hareof the
work-load that each switch gets in the worst case.
Fig. 10 shows thenormalized valid coloring size as a

b q=1 P - function of the shortest path in random instances of the
RN - problem. We ran 10,000 random instances of the problem. In
09 > \é-/ ™ - v g Flg_. 1Q(a)_the parameters azrf: 10, J:: 10 andpiz 0.8,
shortest path size (s) while in .Flg. 1Q(b) they arer = 20, f = 1.0 andp,, = 0.4.
The simulation results show that @sincreases, the nor-
Fig. 9. Fraction of the optimal valid coloring size that candmhieved by Malized number of colors also increases. For example, for a

the 1-GREEDY, 2-GREEDY, and3-GREEDY algorithms. Parameters ane= 7,

shortest path size = 5 andn = 10 switches, a normalized
f=7andp, = 3.

valid coloring of size 4.3457, 4.5429 and 4.6101 was acklieve
for d =1, d =2 andd = 3, respectively.

Fig. 8(a) illustrates the average size of the valid colosime
obtained by our algorithms for = 10, f = 10, andp,, = 0.8,
while Fig. 8(b) shows it fom = 20, f = 10, andp,, = 0.4.
Note that for a shortest path sizeandn = 10 switches, the

VIl. CONCLUSION

This paper proposed Palette, a framework to decompose and
distribute SDN tables across the network. Palette is ealheci

maximum valid coloring size i§, and indeed, our algorithmsimportant as switch table sizes can become a bottleneck in
achieve on average a valid coloring of size 4.3043, 4.7575aling SDNs. Moreover, it facilitates handling the hegere-

and 4.7573 fo; — 1, ¢ — 2, andg — 3, respectively. Clearly, ity of switches in the networl_< and the changes_ of equipment.
a larger value ofy results in a larger number of colors, on Ve modeled the problem in a graph-theoretic manner, and
average. proposed several algorithms, both for decomposing one tabl

We further study the our algorithms on smaller network{® Semantically-equivalent subtables and for spreadiegeth
where we are able to compute thetimal valid coloring subtables across the network. Our algorithms were evaluate

size. Fig. 9 shows the number of colors found by the gree§@th under random and real-life instances.

approach in terms of percentage of the optimal solution. ngaAS 'iLIJture work,” we nrc:w plan _tg, implement Pa[ette olver
parameters in this case ate="7, f =7 andp,, = % and we q penriow contdrod'ers.,bt us’sg:\?\” tl)rllg a\?v automa:]lc too t‘,)
ran the simulation 1000 times. Our results yield that, irs¢éhe ecompose and distribute tables. We note that a major

cases, that the greedy approach finds a valid coloring whd{}al€nge in OpenFlow implementations is OpenFlow's re-
size exceeds (on average) 98% of the optimal solution. strictions on the structure of patterns in the table (in Giew
1.0, two fields are allowed to be prefixes, and the other fields

can be either exact or entirely-bits [1]); this will require
adaptation of our decomposition algorithm accordingly: Fi

In this section we evaluate our solution to ti@&, P,¢,d) nally, we plan to extend our optimal coloring algorithms to
RAINBOW PATH PROBLEM To compare the algorithm per-handle additional network topologies (e.g., fat trees,chhi
formance with various values af, we normalize the valid are common in contemporary datacenters).

C. Greedy Approach Evaluation - Multiple Color case

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL

ACKNOWLEDGMENT [24]

The work was partly supported by the European Research
Council Starting Grants 9210389 and r¥259085, the Alon [25]
Fellowship, the ATS-WD Career Development Chair, the
Loewengart Research Fund, the Intel ICRI-CI Center, thgy
Israel Ministry of Science and Technology, and the Israeli
Centers of Research Excellence (I-CORE) program (Centéfl
No. 4/11). We would like to thank Jennifer Rexford for he[28
useful comments on an earlier version of this paper, and Anat
Bremler-Barr for kindly accepting to run several simulago [29]

11

S. Raza, G. Huang, C.-N. Chuah, S. Seetharaman, and gh,Sin
“Measurouting: A framework for routing assisted traffic moning,”
in IEEE Infocom 2010.

A. di Pietro, F. Huici, D. Costantini, and S. NiccolifDecon: Decen-
tralized coordination for large-scale flow monitoring,”lBEE Infocom,
Work In Progress Sessip2010.

M. Sharma and J. Byers, “Scalable coordination techesgtor dis-
tributed network monitoring,” irPAM, 2005.

R. Sherwood, “A crash course in OpenFlow 1.1."
Tech Talk Series, Aug. 2011.

Big Switaternal

] O. Rottenstreich, R. Cohen, D. Raz, and |. KeslassyatExvorst-case

TCAM rule expansion,1TEEE Trans. Comput.2012.
A. X. Liu, C. R. Meiners, and E. Torng, “TCAM razor: a sgstatic

approach towards minimizing packet classifiers in TCAMEEE/ACM
Trans. Networkingvol. 18, no. 2, pp. 490-500, 2010.

REFERENCES [30] A. Bremler-Barr and D. Hendler, “Space-efficient TCANAded classi-
fication using gray coding,” IREEE Infocom 2007.

[1] “Openflow switch specification.” [Online]. Available: [31] C. Meiners, A. Liu, and E. Torng, “Topological transfoation ap-
http://www.openflow.org/documents/openflow-spec-vigdd proaches to TCAM-based packet classificatidBEE/ACM Trans. Net-

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,Reterson, working vol. 19, no. 1, pp. 237-250, Feb. 2011.

J. Rexford, S. Shenker, and J. Turner, “Openflow: enablimgpuation [32] G. Karypis and V. Kumar, “A fast and high quality multildvecheme
in campus networks, ACM Comput. Commun. Revol. 38, no. 2, pp. for partitioning irregular graphs3IAM Journal on Scientific Computing
69-74, 2008. vol. 20, no. 1, pp. 359-392, 1999.

[3] “NEC Univerge PF5240 and PF5820." [Online]. Available:[33] D. Jungnickel,Graphs, Networks and Algorithm8rd ed. Springer
http://www.openflow.org/wp/switch-nec/ Publishing Company, Incorporated, 2007.

[4] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Komjgl and [34] D. Berend and T. Tassa, “Improved bounds on bell numbeds aan
D. G. Andersen, “cSamp: A system for network-wide flow moniigyi moments of sums of random variableRfobability and Mathematical
in USENIX NSD| 2008. Statistics vol. 30, no. 2, pp. 185-205, 2010.

[5] K. Zheng, C. Hu, H. Liu, and B. Liu, "An ultra high througbpand [35] D. E. Taylor and J. S. Turner, “Classbench: a packetsifiaation
power efficient TCAM-based ip lookup engine,”IBEE Infocom 2004. benchmark,” inIEEE Infocom 2005.

[6] K. Zheng, H. Che, Z. Wang, B. Liu, and X. Zhang, “Dppc-reCAM- [36] M. R. Garey and D. S. Johnso@8pmputers and Intractability; A Guide
based distributed parallel packet classification with eaegcoding,” to the Theory of NP-Completeness New York, NY, USA: W. H.
IEEE Trans. Computvol. 55, pp. 947-961, 2006. Freeman & Co., 1990.

[7] S. Shenker, “The future of networking, and the past oft@rols,” in
Open Networking Summi2011.

[8] “Google G-scale network.” [Online]. Available:
http://www.eetimes.com/electronics-news/4371179/Gaalglscribes- APPENDIXA
its-OpenFlow-network _

[9] “HP Procurve Switch.” [Online]. Available: NP-HARDNESSPROOF
http://www.openflow.org/wp/switch-hp/ . .

[10] “Interop 2012 openflow roundup,” 2012. [Online]. Avalile: In this section we show that th@, P,c) RAINBOW PATH

1] Rttpli__//WWW-OFl?erglOwhub-or,\%/bljog::b|09é2012/03/1(’3/1imm2012/ i PROBLEM is NP-hard in the general case, even tore= 2

. Foster, R. Harrison, M. J. Freedman, C. Monsanto, : ; ;
A Story, and D, Walker. “Frenetic: A network programming laage.” colors. The proof is based on reducing the 3-SAT problem [36]
in SIGPLAN ICFP 2011. to the (G, P, ¢c) RAINBOW PATH PROBLEM

[12] M. Reitblatt, N. Foster, J. Rexford, C. Schlesingerddd. Walker, .

“Abstractions for network update,” iIACM Sigcomm2012, pp. 323— Theorem 9. Given a general networks, a path setP, and a
334. _ _ __number of colors, the (G, P,c) RAINBOW PATH PROBLEM

[13] N. Kang, J. Reich, J. Rexford, and D. Walker, “Policynséormation in is NP-hard
software defined networks,” iIACM Sigcomm?2012, pp. 309-310. ’

[14] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalalie-thased . . .
networking with difane,”ACM Comput. Commun. Revol. 41, no. 4, Proof: Let the Boolean expressiofi denote an instance
2010. of the 3-SAT problem with variableX, X5, ..., X,. Thus,

[15] Q. D(_)_ng,_S. B_anerjee, J. Wang, and D. Agr_awal, “Wire sb_pac_ket B=C,ACsA...N\Ci, WwhereC; = (lel v X2v X?’).
classification without TCAMs: A few more registers (and a Hitagic) . . . Lot v
are enough,” irSIGMETRICS2007. We have to construct in polynomial time an instance of the

[16] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “vcrib: Wialized (G, P,c) RAINBOW PATH PROBLEM so that it would have a

7] :;Jlgr?;ﬁga?\nem:g&é?\;ﬂe ﬁlolgg#ig(?i’i\::é(Xloécrg);r?t?:%lz‘ﬁ:ascurate proper coloring if and only if the Boolean expressishis
computation of large-scale ip traffic matrices from link loads S_at'Sf'able' In pra_Ct'Ce’ 9”r pfo‘?f Ueeds two distinct _OQW‘St
SIGMETRICS2003. tions, although with a slight variation. One constructiaids

[18] A. Lakh_ina;’ M Crovella, and C. Diot, “Diagnosing netikewide traffic for the case where there exists an assignrnbsl]ch thatB is

1] ;?OS’aIES’B;;ﬁ?'\ﬂ_CCZ’?;#; Cgmgi%?,' ';?ng?fr;dzfn?‘l’vs_p',féfg’z;% satisfiable withA (X;) = 1, while the other construction holds
G. lannaccone, “Mind: A distributed multi-dimensional indexsystem for the case wheré3 is satisfiable withA (X;) = 0. Since

201 I\(/I)r getlzv?jr_k Idiagnodsi?”\i/HIEEkE AnfOCOWDZ?O%_ —— ~ there is only a slight variation between the two construngjo

. S. Kodialam and T. V. Lakshman, “Detecting networ ons via . .
sampling: A game theoretic approach,”lBEE Infocom 2003. we focus OI_’I the fII‘S.t case.-Arl explanatlor_l on how to apF"y

[21] C. Chaudet, E. Fleury, I. G. Lassous, H. Rivano, and Mvage, the proof with the slight variation is found in the end of this
“Optimal positioning of active and passive monitoring degitein proof.

CoNEXT 2005. . . .

[22] K. Suh, Y. Guo, J. Kurose, and D. Towsley, “Locating netlvmonitors: For each variableX;, we allocate two distinct switches
complexity, heuristics, and coverage,” iBEE Infocom 2005. v; and v}, wherev; representsX; and v] represents—X;.

[23] V. Sekar, A. Gupta, M. Reiter, and H. Zhang, “Coordirmatampling

sans origin-destination identifiers: Algorithms and anialysn COM-
SNETS2010.

be the switch representing-th

Furthermore, letM ij
inally, we add an additional baseline

literal in the:-th clause.

TECHNICAL REPORT TR12-05, COMNET, TECHNION, ISRAEL

switch, denoted/®. So, that the constructed switch détis

V= (U {m,v;}> Uy

We now skip to the construction of the path det First,
for each variableX; we construct the pattv;,v;). There
are n such paths in total. Then, for each clauég, we
construct the patiiv®, M (X}') , M (X?), M (X?)). For ex-
ample, for the claus€X, Vv —X, VvV —X5) we construct the
path (v, vy, v}, v5). Finally, we add the patffv®,v;) to the
path set. So the constructed path Beis

P = ({<Uiavz/‘>}> U

(<va,M<X3>,M<X3>7M<xf>>})U
{(v*,v1)}.

C-1iC>=

S,
[

The construction of the link set is easily deduced from
the construction of the path sé?, where there is an edge

12

APPENDIX B
SPECIAL CASE: ALL PATHS ARE OF LENGTH 2

In this section we consider the case where all path®in
are of size 2. In this case, the problem is not NP-hard, and
in fact can be solved in linear time. This is reflected in the
following theorem.

Theorem 10. Given a general networks, a path setP with
paths of size 2, and = 2, the (G, P,c) RAINBOW PATH
PROBLEM can be solved irO (|V’| + |E’|) time, whereV”’
and E’ are the switch and link sets of the projecti6fjp of
G over P).

Proof: If all paths are of size 2, it clearly follows that
there exists a valid coloring if and only &|p is a bipartite
graph. To determine whether a given graph is bipartite, we
simply use the Breadth-first search (BFS) algorithm [33],
whose complexity i€ (|V’| + |E']). []

between two vertices if and only if this edge is within one of

the paths.

Overall, we construc?-n+ 1 switches and:+n+ 1 paths.
Therefore, the reduction is clearly polynomial.

Let c = 2, andG = (V, E). The Boolean expressioB is

satisfiable withX; = 1 if and only if there is a proper coloring

that solves the constructed instance of {6e P, ¢) RAINBOW
PATH PROBLEM

Given an assignmemt (with A (X;) = 1) that satisfies3,
we color the switches i as follows ¢ € {1,...,n}): If
A(X;) =1 theny (v;) = 2 and~ (v;) = 1, while in the case
where A(X;) = 0, v(v;) = 1 and v (v}) = 2. y(v*) is set
to 1. This implies that for alt € {1,...,n}, v (v;) # v (v)),
and thus there are 2 distinct colors in the firspaths inP.
Since A satisfiesB, then for alli € {1, ..., k} it satisfies the
clauseC;. It implies that at least one of the literal {}; equals
1. Therefore, the corresponding path fihhas the color 2 in
addition tov® = 1. The last path, that iSp®, v1), is easy to
verify.

On the other hand, assume an assignment of cojots
the switches inV' that satisfy the condition of colors per
path. Without loss of generality, due to the last pathHAn
we assume that (v*) = 1, and~ (v1) = 2. We build the
following variable assignmentl: A (X;) = ~ (v;) — 1. First,

we get thatd (X;) = 1. Second, from the definition of the

construction, for ali € {1,...,k}, the clauseC; is satisfied
at least by one literal (whose corresponding switch col@)is

Finally, we may repeat the same proof with a slight variation

in the last path of the path set. Instead(of, v,), we add to
the path sef the path{v*, v} }. Following this variation, it is
possible to prove that the Boolean expressidiis satisfiable

with v; = 0 if and only if there is a proper coloring that

solves the constructed instance of th@, P,¢) RAINBOW
PATH PROBLEM, with ¢ = 2.

Having covered the two cases, we get the claimed result.

