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Optimal Fast Hashing
Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—This paper is about designing optimal high-
throughput hashing schemes that minimize the total number of
memory accesses needed to build and access an hash table.
Recent schemes often promote the use of multiple-choice hashing.
However, such a choice also implies a significant increase in the
number of memory accesses to the hash table, which translates
into higher power consumption and lower throughput. In this
paper, we propose to only use choice when needed. Given some
target hash table overflow rate, we provide a lower bound on
the total number of needed memory accesses. Then, we design
and analyze schemes that provably achieve this lower bound over
a large range of target overflow values. Further, for the multi-
level hash table scheme, we prove that the optimum occurs when
its subtable sizes decrease in a geometric way, thus formally
confirming a heuristic rule-of-thumb.

I. INTRODUCTION

A. Background

High-speed networks with fast hash-based per-packet deci-
sions call for fast hashing schemes. For example, hash tables
are being used for heavy-hitter flow identification, flow state
keeping, virus signature scanning, flow counter management,
and IP address lookup algorithms.

Traditional hash-table construction schemes rely on either
chaining (linked lists) or open addressing (probing) [1]. How-
ever, in the case of hash collisions, the worst-case insertion
time in these schemes cannot be bounded by a constant, mak-
ing them poorly suited to high-speed networks [2]. Further,
when insertion times become unacceptable, the traditional
solution of performing a full hash-table rehash, where all
elements are rehashed using new hash functions, is also
impractical at high speeds.

A typical solution is to restrict the data structure such
that the worst-case number of memory accesses per element
insertion is a constant d. If an element cannot be inserted after
d accesses, it is placed in an expensive Content Addressable
Memory (CAM) based overflow list [3], [4]. The objective
of an hashing scheme then becomes to reduce the overflow
fraction, namely, the fraction of elements that are placed in
the overflow list.

Multiple-choice hashing schemes are particularly suited to
this worst-case insertion time of d [5], [6]. In these schemes,
the hash table is subdivided into many buckets, and each
element can only reside in one of d possible buckets. For
instance, in the d-random and d-left schemes [7]–[9], each
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arriving element uses d hash functions to check the states of
d buckets, and then joins the least-occupied one. If all buckets
are full, it is placed in the overflow list. These schemes achieve
low overflow fractions even when d does not grow with the
number of elements to hash, for instance with d = 4.

However, these multiple-choice hashing schemes always
require d memory accesses per element insertion, even when
the hash table is nearly empty. Therefore, implementing them
in an off-chip DRAM-based hash table means that for every
incoming element to hash, a chip needs to access up to d
memory lines in the off-chip DRAM instead of possibly a
single one. Assuming for simplicity a uniform memory access
time, this means that the links to the DRAM need to work with
a speedup of d; or, equivalently, given a total chip in/out pin
capacity, this implies that a larger fraction of this capacity is
devoted to hashing, yielding a significant throughput decrease
as d increases. Therefore, the large average number of memory
accesses into off-chip DRAM memories translates into a lower
throughput.

Furthermore, when implementing both on-chip SRAM-
based and off-chip DRAM-based hash tables, each memory
access uses some power. Neglecting static power consumption
and assuming a uniform dynamic power consumption per
memory access, a larger average number of memory accesses
also directly translates into a higher power consumption.

Therefore, the average number of memory accesses can
directly influence both the throughput and the power consump-
tion. Hence, while we still want to keep a worst-case bound
d on the number of memory accesses per element, we also
want to significantly reduce the average number a below the
worst-case d used by the above schemes.

Further, while we reduce throughput and power consump-
tion, we do not want to affect performance, as measured by
the overflow fraction. Therefore, given some allowed worst-
case d and average a, the objective of this paper is to find
hashing schemes that minimize the overflow fraction.

B. Contributions

This paper investigates hashing schemes with low expected
overflow fraction given the worst-case and average insertion
times d and a.

We consider stateless hashing schemes, in which the only
way to know a bucket occupancy is to access it, and therefore
allow for a distributed hashing scheme implementation. We
do not consider multi-level memory [10], [11] and element
deletions [2]. Finally, our results apply asymptotically to
hashing schemes with a large number of elements and a large
memory size.

We first establish a lower bound on the expected overflow
fraction as a function of a. The lower bound also depends on
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other system parameters such as the bucket size and the load
on the hash table (that is, the ratio between the number of
elements and the total memory size).

The lower bound enables us to prove the optimality of the
schemes we propose. We provide three hashing schemes and
show that each of them is optimal for a specific range of values
of a.

Specifically, we first demonstrate that a SIMPLE hashing
scheme that relies on a single uniformly-distributed hash
function achieves an optimal overflow fraction for a ≤ 1.

We further show that a multiple-choice GREEDY scheme
with d uniformly-distributed hash functions, in which each
element successively checks up to d buckets until it can be
inserted, achieves optimality for a ≤ aco

GREEDY, where aco
GREEDY >

1 depends on the system parameters.
The optimality range can be further extended using a multi-

level hashing (MHT) scheme [3], [11], [12]. In particular,
among all MHT schemes, we demonstrate the optimality of
those in which the subtable sizes decrease geometrically
according to a factor that depends on system parameters, thus
confirming a previously-known rule-of-thumb.

Further, while we obtain the optimal expected overflow
fraction for a specific value a, we can equivalently find
the optimal a for a given expected overflow fraction, and
potentially a corresponding optimal scheme. Thus, this paper
provides an optimal fast hashing scheme given a targeted
overflow fraction.

We conclude by providing simulations and quantitative
results showing that our models closely reflect simulation
results.

C. Related Work

A crucial problem in hash tables is how to avoid colli-
sions between elements. Traditional strategies include open
addressing and chaining [1]. These strategies store all colliding
elements in another bucket, resulting in relatively difficult
algorithms for insertion, deletion, and lookups that do not
ensure a constant run-time in the worst case.

As we already mentioned, a popular approach to alleviate
this problem is to use multiple hash functions, with various
ways in which they can be used. In [7] the authors considered
the d-random scheme: Each element is hashed by d hash
functions, where the element is placed in the least occupied
bucket. If n elements are inserted sequentially to n buckets, the
maximum load in a bucket is log log n

log d +O(1) with high proba-
bility, as opposed to the case where just one hash table is used,
in which the maximum load in a bucket is log n (1 + O(1)).
In [8], [9] the authors considered and analyzed the d-left
scheme, where initially the n buckets are divided into d groups
of size n

d which are ordered from left to right. Again, each
element is hashed by all d hash functions. But this time, every
hash function has the range of [1 · · · n

d ], where the first hash
function determines a bucket on the first (left-most) group,
the second hash function determines a bucket on the second
group, and so on. The element is placed in the least occupied
bucket, where ties are broken toward the left. This scheme
was shown to be better than the d-random scheme. However,

both d-random and d-left schemes access the memory exactly
d times for every element. We argue that such a usage in
memory may be unjustified.

Multi-level hash tables (MHT) were introduced in [12] and
analyzed in [3], [11], [12]. The basic idea is to divide the hash
table into d ordered subtables, such that one hash function
is used for every subtable, and the element is placed in the
first subtable whose hash function returns a non-full bucket.
The number of the subtables and the exact partitioning of the
memory among the subtables depend on the exact architecture.
Specifically, [12] considered the case where n elements should
be stored in O (n) buckets of size 1; they show that in
order to avoid overflows, the number of hash functions (and
subtables) must be at least log log n + O (1) and the expected
number of rehashing needed is constant. In [11], the authors
considered the case where no rehashing is allowed and used
the multilevel hash table as the underlying architecture for
an on-chip summary mechanism. Finally, in [4], the authors
focused on the case where d = 4, while the scheme proposed
allows at most one move per element after it was stored.

Another scheme, called cuckoo hashing [13] (originally
presented for d = 2 and buckets of size 1), takes advantage of
the fact that every element has d possible buckets. Whenever
an insertion operation fails because all buckets are occupied,
the new element switches with an older element, which is
rehashed and may switch in turn with another element, and so
on. This process continues until all elements are positioned and
may require Ω(log n) moves with non-negligible probability.
Our proposed schemes differ from this scheme as they don’t
move elements after being hashed, so that they would comply
with hardware considerations.

Recently, Kirch et al. [5] survey these schemes and addi-
tional hashing-based techniques (such as Bloom Filters) and
how they are used for high-speed packet classification.

D. Paper Organization

We start with preliminary definitions in Section II. Sec-
tion III provides a lower bound on the overflow fraction. Then,
in Sections IV, V, and VI, we present and analyze the SIMPLE,
GREEDY, and MHT schemes respectively, which we finally
evaluate in Section VII.

II. PROBLEM STATEMENT

We adopt the conventional hashing terminology and nota-
tions [4], [12]. As illustrated in Fig. 1, we are given a set E
of n elements to insert in an initially-empty hash table. The
hash table consists of a set B of m buckets of size h each and
of an overflow list. Our goal is to find a hashing scheme to
insert the elements.

Definition 1: A hashing scheme, or hash-table construction
scheme, consists in defining:
(i) d hash-function probability distributions over bucket set B,
used to generate a hash-function set H = {H1, . . . ,Hd} of d
independent random hash functions;
(ii) and an insertion algorithm that sequentially inserts the
n elements in the hash table. The insertion algorithm places
each element x ∈ E either in one of the d buckets
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Fig. 1. Illustration of the hashing model.
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Fig. 2. Illustration of MHT scheme.

{H1(x), . . . , Hd(x)} or in the overflow list. At most h ele-
ments can be placed in each bucket.

Note that our sequential insertion framework does not allow
schemes that move elements after their initial insertion, such
as [4], [13]. However, our overflow lower bound in Section III
does apply to these as well.

Example 1 (MHT): A multi-level hash table (MHT) [3],
[11], [12] construction scheme conceptually divides the m
buckets into d separate subtables, T1, . . . , Td, where Ti con-
tains αi ·m buckets, with

∑
αi = 1.

(i) MHT generates each hash function Hi according to the
uniform distribution over the buckets in Ti;
(ii) and the insertion algorithm successively places each ele-
ment x in the smallest i such that Hi(x) is not full, and in
the overflow list if all such buckets are full.
Fig. 2 illustrates MHT with m = 12, h = 1 and d = 2
(the overflow list is not represented). The gray buckets are
the occupied ones. Dashed arrows represent potential memory
accesses that are not performed (and exist only to illustrate
the mapping of the elements). We can see that element 6 is
initially mapped by H1 to a full bucket in the first subtable,
and therefore is inserted in the second subtable, where it is
mapped into an empty bucket by H2. On the contrary, element
7 is directly inserted in the first subtable, and does not use H2.
Therefore, it only uses one memory access.

The throughput of a hashing scheme is measured by the
number of memory accesses needed to store the incoming
elements in the hash table. We define a memory access time
as the time needed to access a single bucket, read all of its
elements, and update them. This definition corresponds for
instance to an update (operation) of one word in SRAM or
DRAM memory. We assume that a hashing scheme needs to
access a bucket in order to obtain any information on it; thus, if
the hashing scheme tries to insert an element in a full bucket, it

wastes a memory access. We also do not count accesses to the
overflow list. We finally allow the hashing scheme to access
up to d buckets in parallel at each element insertion before
deciding which one to update. Thus, we get the following
number of memory accesses for previously known schemes:

Example 2 (d-random and d-left): Inserting an element in
the least loaded of d buckets requires d memory accesses [7]–
[9].

Example 3 (MHT): Inserting an element in subtable Ti re-
quires i memory accesses, since in that case we first sequen-
tially access i− 1 full buckets in subtables T1, . . . , Ti−1, and
then access the last non-full bucket in subtable Ti.

We further consider two throughput constraints. First, we
impose that the average number of memory accesses per
element insertion be bounded by some constant a ≥ 0.
In addition, the worst-case number of memory accesses per
element insertion is always bounded by d, because an element
does not need to consider any of its d hash functions more
than once. Let the load c = n

mh denote the ratio of the number
of elements to insert by the total memory size. Then we can
formalize these two constraints:

Definition 2: An 〈a, d, c, h〉 hashing scheme is a hashing
scheme that inserts all elements with an average (resp. maxi-
mum) number of memory accesses per insertion of at most a
(resp. d), when given a load c and a bucket size h.

Let γ denote the expected overflow fraction of the elements,
i.e. the expected ratio of the number of elements that cannot
be stored in the buckets by the total number of elements n.
These unstored elements are placed in the overflow list, which
usually is more expensive than the memory buckets (e.g., when
implemented in a CAM [4]) or requires more memory accesses
(e.g., as a linked list). Our goal is to minimize γ:

Definition 3: The OPTIMAL HASH TABLE CONSTRUCTION
PROBLEM is to find an 〈a, d, c, h〉 hashing scheme that min-
imizes γ as the number of elements n goes to infinity.
Whenever defined, let γOPT denote this optimal expected limit
overflow fraction.

The definitions above do not only bound the total number
of memory accesses per element insertion but also per element
lookup. First, since each element can only be placed in one
of d buckets, the number of memory accesses needed for a
lookup is bounded by d. Second, in most hashing schemes,
the lookup operation accesses buckets in the same order as the
insertion operation. Therefore, the average number of memory
accesses to query a random element in the hash table is also a.
So, given a probability p that a queried element is in the hash
table, the average number of memory accesses needed for a
lookup is bounded by p · a + (1 − p) · d. Therefore, in most
hashing schemes, the bounds on insertion memory accesses
directly translate into bounds on lookup memory accesses.

III. OVERFLOW LOWER BOUND

A. The Cloning Method

In this section, we provide a lower bound on γOPT, and there-
fore on the expected limit overflow fraction of any 〈a, d, c, h〉
hashing scheme. We do so by relaxing three conditions.
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First, we consider an offline case, in which the hashing
scheme looks at all elements at once, instead of considering
them in the predetermined online sequential order.

Second, we omit the bound d on the worst-case number
of memory accesses per element, and enable all elements to
use any number of memory accesses, as long as the average
number of memory accesses per element is still at most a.

Last, we dissociate the memory accesses from the elements.
In other words, we hypothetically consider each memory
access to a bucket as if it is made by a clone of the initial
element and allow the clone to be inserted if the bucket
is not full, independently of the other clones. Thus, if one
element accesses two buckets, it conceptually corresponds to
two clones each accessing one of these buckets, potentially
corresponding to two clone insertions. The number of inserted
clones after this dissociation is clearly an upper bound on
the actual number of inserted elements. In our case, since n
elements make at most a memory accesses per element on
average, we will consider a set of at most an clones making
one memory access each and evaluate the number of such
clones that are inserted.

Conceptually, the cloning relaxation is the most significant
one. While it seems to provide a crude bound, we will later
see that this bound is actually tight over a range of values of
a.

Note that our lower bound also holds for schemes that
allow moves, such as cuckoo hashing [13] and one-move
schemes [4], since we are assuming an offline non-sequential
setting.

B. Identical Hash Function Distributions

Different elements might end up using different hash func-
tions, and therefore generate memory accesses by their clones
that are distributed in a different way. We first consider the eas-
ier case in which all hash functions have the same distribution,
implying that all memory accesses by the clones are distributed
in the same way. Then, we later consider the heterogeneous
case, in which the hash functions do not necessarily have the
same distribution. In both cases, we eventually derive the same
lower bound on the expected limit overflow fraction.

We start with the setting in which all hash functions are
distributed identically, but the common distribution is not
necessarily uniform. In this setting, the following theorem
provides a lower bound on γOPT.

To prove it, we bound the expected fraction of unused
memory after the insertion of all elements. We approximate the
binomial distribution of the load on each bucket by a Poisson
distribution, and supply a bound on the approximation error.
Then, we prove the theorem on the Poisson distribution, and
apply the bound to conclude.

Theorem 1: Under the constraint that all hash functions
are distributed identically, the optimal expected limit overflow
fraction γOPT in the OPTIMAL HASH TABLE CONSTRUCTION
PROBLEM is lower bounded by

γLB (a) = 1− 1
c

+
1
ch

e−ach
h∑

k=0

(h− k)
(ach)k

k!
,

and this lower bound is computed with the uniform distribu-
tion.

Proof: We derive the lower bound on the overflow frac-
tion by bounding the expected fraction of unused memory
after the insertion of all elements. Let f : E → [0, 1] be
the distribution used by the hash functions, where f(i) is the
probability that a hash function maps any element x ∈ E to
a bucket i ∈ B, and

∑
f (i) = 1. The number of elements

mapped to the specific bucket number i follows a binomial
distribution with a · n trials of success probability f(i) each.
Furthermore, as assumed above, we consider the case where
m and n are large and we can approximate it by a Poisson
distribution of parameter λi = a ·n ·f(i). Let Z be the random
variable that represents the ratio of the unused memory size
by the total memory size. We note that Z clearly depends f .
Then, By the linearity of expectation,

E(Z) =
1

mh

m∑

i=1

h∑

k=0

(h− k)
(

an

k

)
f(i)k (1− f(i))a·n−k

.

Using the Poisson approximation,

E (Z) ≈ 1
mh

m∑

i=1

h∑

k=0

(h− k)
(anf(i))k

e−a·nf(i)

k!
, (1)

and we denote it by En (Z).
Barbour and Hall Theorem [14] yields that the to-

tal variation distance between the Binomial distribution
and the Poisson approximation representing the number
of elements mapped to bucket i, is bounded by λ−1

i ·(
1− e−λi

) ∑an
j=0 (f (i))2 ≤ f (i).

By [15], the total variation distance is equivalent to the
following expression:

1
2

∞∑

j=0

|Pr (X = j)− Pr (Y = j)| = 1
2

∞∑

j=0

δX,Y (j) ,

where Y is the approximated random variable distributed
Poisson, and X is the actual random variable distributed
Binomial.

Thus, we find a bound on the error:

|E (Z)− En (Z)| ≤ 1
mh

m∑

i=1

h∑

k=0

(h− k) · δX,Y (j)

≤ 1
mh

m∑

i=1

h

h∑

k=0

δX,Y (j)

≤ 1
mh

m∑

i=1

h · 2f (i)

=
2
m

(2)

this implies that the error is bounded by a constant, and
therefore we are able to seek for the extremal points of En (Z)
and bound E (Z).
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By substituting f(m) = 1 −∑m−1
i=1 f(i) in the expression

for En (Z), we get:

En (Z) = 1
mh

∑m−1
i=1

∑h
k=0 (h− k) (anf(i))ke−a·nf(i)

k!

+ 1
mh

∑h
k=0 (h− k) ·

(
an(1−

∑m−1

i=1
f(i))

)k
e
−a·n(1−

∑m−1

i=1
f(i))

k!

We further denote the inner sum of the first term for each
i as gi (f) and the sum in the second term as gm (f), so that
En (Z) = 1

mh

∑m−1
i=1 gi (f) + 1

mhgm (f). Note that formally
gi (f) is a function with m−1 variables: f(1), f(2), ..., f(m−
1), although in practice it only depends on f(i) (unless i =
m). Thus, in order to find a global minimum we will apply a
second derivative test using the corresponding Hessian Matrix.

We first deal with the Hessian matrices of gi (f) with i 6=
m. Since gi (f) only depends on f(i), the Hessian matrix
Hgi(f) ≡ [hi

jk] =
[

∂2gm(f)
∂f(j)∂f(k)

]
of gi (f) has only a single

non-zero element:

hi
ii =

∂2gi (f)
∂f(i)2

= (a · n)2
(a · n · f(i))h−1

e−a·n·f(i)

(h− 1)!
.

On the other hand, the Hessian matrix Hgm(f) of gm (f)
(which depends on f(1), . . . , f(m−1)) has the same elements
in all its entries and their value is

hm
jk =

∂2gm (f)
∂f(j)∂f(k)

= (a · n)2
(a · n · f(m))h−1

e−a·n·f(m)

(h− 1)!
,

where f(m) = 1−∑m−1
i=1 f(i).

It is easy to verify that all eigenvalues of these Hessian ma-
trices Hgi(f) are non-negative, implying that all the functions
gi (f) are convex. Thus, E(Z) is also a convex function, as a
sum of convex functions. Finally, in order to find an external
point we differentiate the expression:

∂E(Z)
∂f(i) = −a · n

mh · e−a·nf(i) ·∑h−1
k=0

(anf(i))k

k!

+a · n
mh · e−a·n(1−

∑m−1

i=1
f(i)) ·∑h−1

k=0

(
an(1−

∑m−1

i=1
f(i))

)k

k!

Comparing this expression to 0 yields a system of m − 1
equations with m − 1 variables; one of its solutions fu

corresponds to the uniform distribution, in which f(i) = 1
m

for all i ∈ {1, · · · ,m}. By applying the second derivative test
on the Hessian matrix HE(Z) =

∑m
i=1 Hgi(f), we verify that

it is positive definite at fu and thus fu is a local minimum
of E(Z). By convexity, we deduce that it is in fact a global
minimum over all the region.

Thus, the minimum expectation of unused memory is

Emin(Z) = e−a· n
m

1
h

∑h
k=0 (h− k) (a n

m )k

k! , implying that at
least n− (mh−mhEmin(Z)) elements are overflowed. Since
we are interested in the limit expectation overflow fraction, i.e.
n,m → ∞, we get that the error bound in Equation 2 tends
to zero, and therefore the result expression is tight. Finally,
the claimed expression of the minimum overflow fraction of
elements by substituting c = n

mh .

Under the assumptions above, we derive the following
example:

Example 4: If h = 1,

γLB (a) = 1− 1
c

+
1
c
e−ac.

Thus, for c = 1, i.e. n = m, we get

γLB (a) = e−a,

and the lower-bound decreases exponentially as a function
of the average number of memory accesses per insertion a.
Therefore, for any constant a, an 〈a, d, c, h〉 = 〈a, d, 1, 1〉
hashing scheme can never reach a zero-overflow result.

C. Multiple Hash Function Distributions

We now consider a setting where ` ≤ d different distribu-
tions over the buckets are used by the d hash functions. Denote
these distributions by f1, . . . , f`, and assume that distribution
fi is used by a fraction ki of the total memory accesses, with∑`

i=1 ki = 1. We now show that Theorem 1 holds also in this
case.

Theorem 2: The optimal expected limit overflow fraction
γOPT is lower bounded by

γLB (a) = 1− 1
c

+
1
ch

e−ach
h∑

k=0

(h− k)
(ach)k

k!
,

and is reached when for each bucket i ∈ {1 · · ·m},∑`
p=1 kpfp(i) = 1

m , namely, the weighted average of all
distributions is uniform.

Proof: As in the proof of Theorem 1, the number of
elements mapped to bucket i by all hash functions fol-
lows approximately a Poisson distribution with rate λi =
an

∑`
p=1 kpfp(i). Let Y be the random variable that follows

this Poisson distribution, and X be the actual random variable.
Then, from [14], [15], we get:

∞∑

j=0

δX,Y (j) ≤ λ−1
i · (1− e−λi

)∑̀
p=1

an·kp∑

j=1

(fp (i))2

≤ λ−1
i

∑̀
p=1

an · kp (fp (i))2

=

∑`
p=1 kp (fp (i))2
∑`

p=1 kpfp(i)

≤ maxp∈{1,··· ,`}{fp(i)}
∑`

p=1 kpfp (i)
∑`

p=1 kpfp(i)
= max

p∈{1,··· ,`}
{fp(i)}

Therefore,

|E (Z)− En (Z)| ≤ 1
mh

m∑

i=1

h∑

k=0

(h− k) · δX,Y (j)

≤ 1
mh

m∑

i=1

h

h∑

k=0

δX,Y (j)

≤ 2
m

m∑

i=1

max
p∈{1,··· ,`}

{fp(i)}

=
2 · `
m
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Fig. 4. Illustration of SIMPLE scheme.

Thus, the proof of Theorem 1 implies that to get global
minimum over the overflow fraction, for every bucket i,
an

∑`
p=1 kpfp(i) must equal an

m . This implies that

∑̀
p=1

kpfp(i) =
1
m

is a necessary condition for optimal overflow fraction.
Further, since any legal combination of kp and fp can be

considered as a single distribution, Theorem 1 implies that
a lower value of the overflow fraction cannot be found if
the above condition is violated, and thus is also a sufficient
condition.

Note that while any offline algorithm may pick its own
values explicitly, we would typically like to have an online
hashing scheme in which the values of kp are picked implicitly
so that

∑`
p=1 kpfp(i) = 1

m . In Fig. 3, there is an example
of two distributions that under k1 = 1

3 and k2 = 2
3 reach the

lower bound:

f1(i) =





3
m i ≤ m

3

0 otherwise

and

f2(i) =





3
2m i > m

3

0 otherwise

IV. SIMPLE - A SINGLE-CHOICE HASHING SCHEME

We now want to find simple hashing schemes that can
potentially achieve the overflow fraction lower bound γLB, and
therefore the optimal overflow fraction γOPT.

We start by analyzing a simplistic hashing scheme, denoted
SIMPLE. This scheme only uses a single uniformly-distributed
hash function H . Each element is stored in bucket H (x) if it
is not full, and in the overflow list otherwise.

Furthermore, to keep an average number of memory ac-
cesses per element of at most a, not all elements can be
inserted when a < 1. Therefore, in that case, the process stops
when a total of a · n memory accesses is reached, and the
remaining elements are placed in the overflow list as well.

Fig. 4 illustrates SIMPLE with m = 12 and h = 1 (the
overflow list is not represented). We can see that element 6 is
mapped by H to a full bucket, and therefore cannot be inserted.
Thus, it joins the overflow list. On the contrary, element 7 is
directly inserted in an empty bucket.

Following our notations in Definition 2, SIMPLE is an
〈a, 1, c, h〉 hashing scheme; we will show that it is optimal
for a ≤ 1.

A. Description by Differential Equations

In recent years, several hashing schemes have been modeled
using a deterministic system of differential equations [4], [6].
We adapt this approach in order to describe the SIMPLE
scheme.

We start by considering that the j-th element is inserted in
the hash table at time j

n ; namely, all elements are handled
by time t = 1. Furthermore, let Fi

(
j
n

)
denote the fraction of

buckets in the hash table that store exactly i elements at time
j
n , just before element j is inserted, and ~F

(
j
n

)
be the vector

of all Fi

(
j
n

)
’s. Also, let ∆Fi

(
j+1
n

) 4
= Fi

(
j+1
n

) − Fi

(
j
n

)
denote the change in the fraction of buckets that store exactly
i elements between times j

n and j+1
n . Then

E
(
∆Fi

(
j + 1

n

)
|~F

(
j

n

))
=





− 1
m

F0

(
j
n

)
i = 0

1
m

Fh−1

(
j
n

)
i = h

1
m

(
Fi−1

(
j
n

)
− Fi

(
j
n

))
otherwise

(3)
At time t = 0, Fi (0) = 1 if i = 0 and 0 otherwise.

The first equality shows that the fraction of empty buckets
only decreases when element j reaches an empty bucket,
which happens with probability F0

(
j
n

)
. Likewise, in the

second equality, the fraction of full buckets only increases
when element j hits a bucket of size h− 1. Last, in the third
equality, the fraction of elements of size i either increases with
probability Fi−1

(
j
n

)
, or decreases with probability Fi

(
j
n

)
.

Any such increment or decrement is by a value of 1
m .

By dividing both sides of the equation by 1
n and considering

the fact that n is large, so that the values of ∆Fi

(
j+1
n

)
are comparatively very small, we can use the fluid limit
approximation, which is often very accurate [4]:

dfi(t)
dt =





− n
mf0 (t) i = 0

n
mfh−1 (t) i = h

n
m (fi−1 (t)− fi (t)) otherwise

More formally, let ~f (t)
4
= (f1 (t) , . . . , fd (t)) be the so-

lution of the above set of linear differential equations when
assuming f0(0) = 1 and fi(0) = 0 for each i 6= 0. Then,
by Kurtz theorems [16]–[18], the probability that ~f deviates
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from ~F by more than some constant ε decays exponentially
as a function of n and ε2 [4]. For further intuition behind this
statement, refer to [4] and [19, Chapter 3.4].

B. Optimality of the SIMPLE Scheme

We solve analytically the system of differential equations
to obtain the overflow fraction of the scheme and show that
it is identical to the lower bound given in Theorem 1. Since
SIMPLE does not perform more than one memory access per
operation, this yields the following theorem.

Theorem 3: The SIMPLE scheme solves the OPTIMAL
HASH TABLE CONSTRUCTION PROBLEM for a ≤ 1, d = 1,
and any values of c and h.

Proof: We solve the differential equations one by one,
substituting the result of equation i into equation i + 1. The
first equation depends only on f0 (t), thus f0 = e−

n
m t. Each

other equation i depends on fi−1 (t) and fi (t). Finally, for
fh (t), we use the fact that

∑h
i=0 fi = 1 and substitute all the

previous solutions. The resulting values are

fi (t) =

{
1
i!

(
n
m t

)i
e−

n
m t i < h

1−∑h−1
k=0

1
k!

(
n
m t

)k
e−

n
m t i = h

(4)

Note that the solution is the Poisson distribution with λ = n
m t.

This is no surprise, due to fact that at a given time t, the
total number of mapped elements into a specific bucket is
distributed according to Bin

(
nt, 1

m

)
, thus the corresponding

limit distribution is Poisson
(
λ = n

m t
)
.

We define the overflow fraction at time t as the fraction of all
n elements that has not been inserted into the buckets by time t
and denote it γSIMPLE (t). Thus, γSIMPLE (t = 0) = 1, since at the
start no elements have been inserted yet. Then, the γSIMPLE(t)
function is decreasing as more elements are inserted, until it
reaches the final overflow fraction γSIMPLE = γSIMPLE(t = 1).
Using the solutions above, right before the j-th elements is
hashed, the overflow fraction at time t = j

n is

γSIMPLE (t) = 1− m

n

h−1∑
i=0

i · 1

i!

(
n

m
t
)i

e−
n
m

t

−m

n
· h ·

(
1−

h−1∑
k=0

1

k!

(
n

m
t
)k

e−
n
m

t

)

= 1− t +
m

n

∞∑
i=h+1

(i− h) · 1

i!

(
n

m
t
)i

e−
n
m

t (5)

Alternatively, one can also consider the cumulative overflow
fraction at time t; namely, considering only the n · t elements
that are handled by this time (and normalizing according to
n · t and not n). This cumulative overflow fraction is:

γt
SIMPLE (t) = 1− m

nt

h−1∑

i=0

i · 1
i!

( n

m
t
)i

e−
n
m t

−m

nt
· h ·

(
1−

h−1∑

k=0

1
k!

( n

m
t
)k

e−
n
m t

)
(6)

At time t = 1, we get γSIMPLE = γSIMPLE (1) = γt
SIMPLE (1),

which is the overflow fraction of the scheme.
The equations above are only true as long as the average

number of memory accesses per element is at most a. Since
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Fig. 5. Model and simulation results for the SIMPLE scheme given load
c = 1, bucket size h = 3, and memory size m = 10, 000.

this average number equals t at time t, the process is stopped
at t = a. Then, the optimality of the scheme is obtained by
substituting c = n

mh and t = a in Equation (5) and comparing
it to γLB (a) of Theorem 1.

C. Case Study - A SIMPLE 〈1, 1, c, 1〉 Hashing Scheme

In the SIMPLE scheme, each element is hashed exactly once,
therefore, both d, the maximum number of memory accesses,
and a, the average number of memory accesses, equal to 1.
We want to consider the case where the bucket size is also 1,
and derive the expressions for f0 (t):

f0 (t) = e−
n
m t = e−c·t,

and f1 (t) = 1− f0 (t).
Next, the overflow fraction γSIMPLE (t) is given by:

γSIMPLE (t) = 1− m

n
· (1− e−

n
m t

)
.

Therefore, for a = 1, it meets the lower bound at t = 1, using
c = n

m :

γSIMPLE (t = 1) = γLB (a = 1) = 1− 1
c
· (1− e−c

)
.

And if c = 1, we get:

γSIMPLE (t = 1) = e−1 = 36.8%.
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Fig. 6. Illustration of GREEDY scheme.

D. Simulation Results

We now compare the analytical results of the SIMPLE
scheme with simulation results. Since the SIMPLE scheme uses
a hash function with uniform distribution, we simulated it by
successively choosing a bucket for each element uniformly at
random. We used a load c = 1, a bucket size h = 3, and
m = 10, 000 buckets.

Fig. 5(a) shows how the bucket occupancies evolve over
time. All buckets are empty at the beginning, while at the
end, 57.68% of the buckets are full, i.e. hold three elements,
22.40% hold two elements, 14.94% hold a single element and
4.98% of the buckets are empty. For all functions, our fluid
model appears to closely match simulations.

Fig. 5(b) shows how the overflow fraction and the cu-
mulative overflow fraction evolve over time. As previously
explained, the overflow fraction is a monotonically-decreasing
function that starts at 1 while the cumulative overflow fraction
is a monotonically-increasing function that starts at 0. Both
functions get the same value at the end. Here again, for
both functions, our fluid model appears to closely match
simulations.

V. GREEDY - A MULTIPLE-CHOICE HASHING SCHEME

In the GREEDY scheme, we use an ordered set of d hash
functions H = {H1, . . . , Hd}, such that all the hash functions
are independent and uniformly distributed. Upon inserting
an element x, the scheme successively reads the buckets
H1(x),H2(x), . . . Hd(x) and places x in the first non-full
bucket. If all these buckets are full, x is placed in the overflow
list. Last, as in SIMPLE, to keep an average number of memory
accesses per element of at most a, the process stops when a
total of a · n memory accesses is reached, and the remaining
elements are placed in the overflow list as well.

Fig. 6 illustrates GREEDY with m = 12, h = 1 and d = 2.
We can see that element 6 is initially mapped by H1 to a full
bucket. It is therefore mapped again by H2, and inserted in an
empty bucket. On the contrary, element 7 is directly inserted
in an empty bucket, and therefore does not need a second
memory access.

A. Description by Differential Equations

We model the dynamics of the GREEDY scheme as a system
of differential equations, in which time is scaled according to

element arrivals. As before, let fi (t) represent the fraction of
buckets storing i elements at time t, then

dfi (t)
dt

=





− n
mf0 (t) g (t) i = 0

n
mfh−1 (t) g (t) i = h

n
m (fi−1 (t)− fi (t)) g (t) otherwise

(7)

where

g (t) =
d−1∑

k=0

fh (t)k =
1− fh (t)d

1− fh (t)
,

with f0(0) = 1 and fi(0) = 0 for each i 6= 0 as an
initial condition. Compared to the differential equations of
the SIMPLE scheme from Equation (3), there is an additional
factor g (t). For instance, in the first equation, f0 (t) is replaced
by f0 (t) g (t) =

∑d−1
k=0

[
fh (t)k · f0 (t)

]
, which represents the

sum of the probabilities of entering an empty bucket after
k = 0, 1, . . . , d− 1 hits at full buckets.

The process stops when reaching a total of a · n memory
accesses, thus we keep count of the total number of memory
accesses. Let fa

GREEDY (t) denote the cumulative number of
memory accesses done by time t, normalized by n. It can
be modeled as

dfa
GREEDY (t)

dt
=

d−1∑
k=1

k·(fh (t))k−1 (1− fh (t))+d·(fh (t))d−1 , (8)

with fa
GREEDY (0) = 0 as an initial condition. We stop the

process when either t = 1 or fa
GREEDY (t) reaches a. The

differential equation reflects the fact that at a given time
t, the cumulative number of memory accesses increases by
1 ≤ k < d memory accesses whenever the first k−1 memory
accesses hit full buckets and the next one hits a non-full
bucket. It also increases by d memory accesses whenever the
first d− 1 memory accesses hit full buckets, independently of
the bucket state in the d-th memory access.

B. Optimality of the GREEDY Scheme

We now want to show the optimality of the GREEDY scheme
over a range of values of a. In general, the above differential
equations are hard to solve analytically, and thus cannot help
in showing optimality — even though they can of course be
solved numerically and yield a numerical approximation of the
expected overflow fraction.

Instead, to show the optimality of the GREEDY scheme, we
reduce it to the optimality of the SIMPLE scheme using the
cloning method. Since both the SIMPLE and GREEDY schemes
use the same uniform distribution, a new attempt to insert an
element after hitting a full bucket in the GREEDY scheme is
equivalent to creating a new element (or clone) in the SIMPLE
scheme and then trying to insert it. In other words, the number
of clones successfully inserted by the GREEDY scheme after
considering n elements and using a total of a · n memory
accesses is the same as the number of elements successfully
inserted by the SIMPLE scheme after considering a · n clones
and using a single memory access per clone.

We next show that GREEDY is an optimal 〈a, d, c, h〉
hashing-scheme for a ≤ fa

GREEDY (1) and any values of d, c
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and h. We call the value fa
GREEDY (1) the cut-off point of the

GREEDY scheme and denote it by aco
GREEDY; beyond this average

number of memory accesses per element, the GREEDY scheme
is not necessarily optimal anymore. It is important to notice
that the differential equations, described in Section V-A, are
used only to obtain the optimality range (that is, to calculate
the value of aco

GREEDY).
Theorem 4: The GREEDY scheme solves the OPTIMAL

HASH TABLE CONSTRUCTION PROBLEM for a ≤ aco
GREEDY and

any values of d, c and h, where aco
GREEDY = fa

GREEDY (1).
Proof: We compare the GREEDY scheme with the SIMPLE

scheme. In the GREEDY scheme, we continually try to insert
each element, until either it is placed or all d function are used.
Note that all hash functions have the same (uniform) distribu-
tion over all buckets. Thus, for every i, fi (t)–and therefore
also γGREEDY (t)–are independent of the exact elements that
are hashed. Moreover, applying d1 ≤ d hash function on the
same element is equivalent to applying a single hash function
on d1 different elements. This implies that the results of the
SIMPLE scheme hold also in this case with a different time
scale: The insertion process continues beyond time 1, until
time a, in which a total of a·n memory accesses are performed.
Thus, the overflow fraction is obtained by substituting t = a
in Equation (6).

Note, however, that the total number of memory accesses
after all elements are considered is given by fa

GREEDY (1).
thus if a is larger than fa

GREEDY (1) it does not impose an
effective restriction on the scheme; this, in turn, implies that
by increasing a beyond fa

GREEDY (1) one cannot improve the
scheme performance.

Hence, the GREEDY scheme solves the OPTIMAL HASH TA-
BLE CONSTRUCTION PROBLEM for a ∈ [1, aco

GREEDY], because
both expressions are identical and GREEDY does not perform
more than aco

GREEDY memory accesses per insertion. Therefore,
the limit overflow fraction as a function of the average memory
accesses is given by:

γGREEDY (a) = 1− 1
c

+
1
ch

h∑

i=0

(h− i) · (aech)i

i!
e−aech,

where ae = min {a, fa
GREEDY (1)}.

C. Case Study - A GREEDY 〈a, 2, c, 1〉 Hashing-Scheme

Although in general it is difficult to obtain analytically the
value of aco

GREEDY for general values of h and d, in the following
section we describe how it can be obtained when h = 1 and
d = 2

In this specific case, f0 (t) + f1 (t) = 1 and there-
fore the first differential equation in (7) is df0(t)

dt =
− n

m

(
2f0 (t)− (f0 (t))2

)
, where f0(0) = 1 is the given initial

condition. Since this is a Bernoulli differential equation, it can
be solved analytically implying that

f0 (t) = 2

1+e2 n
m

t

f1 (t) = −1+e2 n
m

t

1+e2 n
m

t

and the overflow fraction is given by

γGREEDY (t) = 1− m

n

−1 + e2 n
m t

1 + e2 n
m t

(9)

Finally, in order to compute fa
GREEDY (t), we substitute f0 (t)

and f1 (t) in Equation (8) and solve the resulting differential
equation: dfa

GREEDY(t)
dt = 2e2 n

m
t

1+e2 n
m

t . Integrating the right side and
applying the initial condition implies:

fa
GREEDY (t) =

m

n
· ln

(
1 + e2 n

m t

2

)
, (10)

and by Theorem 4, the range of optimality in this specific case
is a ∈ [1, n

m · ln
(

1+e2 n
m

2

)
].

In particular, if n = m, the cut-off point is aco
GREEDY =

ln
(

e2+1
2

)
≈ 1.4338 and the corresponding overflow fraction

is

γGREEDY(t = 1) =
2

e2 + 1
≈ 23.8%.

Likewise, if n = 0.1m, the cut-off point is aco
GREEDY =

10 ln
(

e0.2+1
2

)
≈ 1.0499 and the corresponding overflow

fraction is

γGREEDY(t = 1) = 1− 10 · e0.2 − 1
e0.2 + 1

≈ 0.33%.

Note that if a is within the range of optimality, by solving
the equation fa

GREEDY (t) = a, we can obtain the time in which
the bound a is reached and no more memory accesses are
allowed. In our case this time turns to be

t =
1
2
· m

n
· ln (

2e
m
n a − 1

)
. (11)

Note that by substituting t in Equation (9), we get:

γGREEDY (a) = 1− m

n

−1 + e
2 n

m

(
1
2 ·m

n ·ln
(
2e

m
n

a−1
))

1 + e
2 n

m

(
1
2 ·m

n ·ln
(
2e

m
n

a−1
))

= 1− m

n

−1 +
(
2e

m
n a − 1

)

1 +
(
2e

m
n a − 1

)

= 1− m

n
+

m

n
e−

m
n a (12)

which matches exactly the result in Theorem 4.

VI. THE MULTI-LEVEL HASH TABLE (MHT) SCHEME

In this section, we consider another hashing scheme, the
multi-level hash table (MHT). We show that it is optimal
beyond a ≤ aco

GREEDY, thus improving upon the GREEDY
scheme, described in the previous section. We later compare
in details the performance of these schemes in Section VII.

In MHT, each of the hash functions maps to a different
subtable and therefore has a different distribution. Theorem 2
states that in this case, the overflow fraction lower bound
γLB is computed using a weighted average distribution that is
uniform across all buckets. As we later show, the MHT scheme
implicitly complies with this condition when the subtable sizes
follow a specific geometric decrease.
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A. Description by Differential Equations

The system of differential equations that characterizes the
dynamics of MHT is similar to that of the GREEDY scheme,
although the static partitioning of the memory among subtables
introduces extra variables. Specifically, let fi,j (t) be the
fraction of buckets in subtable Tj that store exactly i elements.
Then:

dfi,j (t)
dt

=





− n
αjmf0,j (t) gj (t) i = 0
n

αjmfh−1,j (t) gj (t) i = h
n

αjm (fi−1,j (t)− fi,j (t)) gj (t) otherwise
(13)

where gj (t)
4
=

∏j−1
k=1 fh,k (t) represents the probability that

all the insertion attempts in subtables T1, · · · , Tj−1 meet full
buckets, and thus MHT attempts to insert the element in
subtable Tj . By convention, g1 (t) = 1; the initial conditions
are fi,j (0) = 1 for i = 0 and fi,j (0) = 0 otherwise.

As in the GREEDY scheme, let fa
MHT (t) denote the cumula-

tive number of memory accesses done by time t, normalized
by n. Then the following differential equation reflects the
dynamics of fa

MHT (t):

dfa
MHT (t)
dt

=
d−1∑

k=1

k · gk (t) (1− fh,k (t)) + d · gd (t) , (14)

with fa
MHT (0) = 0.

B. Reduction to the SIMPLE Scheme

As in the GREEDY scheme, we prove the optimality of the
MHT scheme by reducing it to the SIMPLE scheme, and do
not rely on the differential equations, which are hard to solve
analytically.

Our approach relies on the fact that each subtable follows a
local SIMPLE scheme. More specifically, all elements attempt-
ing to access some subtable Tj only access a single uniformly-
distributed bucket in Tj , and if this bucket is full, never
return to Tj . Thus, within each subtable Tj , MHT behaves
like the SIMPLE scheme, with a number of initial elements
that depends on previous subtables.

More formally, let nj (t) denote the number of elements
that are considered in subtable Tj up to time t, and γt

j (t)
denote the fraction of these elements that are not placed in
subtable Tj . We will express these using f SIMPLE

i and γt
SIMPLE,

the corresponding functions in the SIMPLE scheme. Note that,
as shown in Equations (4) and (6), f SIMPLE

i (t) and γt
SIMPLE (t)

depend only on the time t, the number of elements n, the
number of buckets m, and the bucket size h; thus, we refer to
them as f SIMPLE

i (t,m, n, h) and γt
SIMPLE (t,m, n, h). We obtain

the following theorem, which is valid for any partition of the
subtables.

Theorem 5: Consider an 〈a, d, c, h〉 MHT hashing scheme
in which for each 1 ≤ j ≤ d, subtable Tj has αj ·m buckets,
with

∑
αj = 1. Then, as long as fa

MHT (t) ≤ a, nj(t), γt
j (t),

and fi,j (t) satisfy:

nj (t) = n · t ·
j−1∏

k=1

γt
k (t) , (15)

γt
j (t) = γt

SIMPLE (1, αjm,nj (t) , h) , (16)
fi,j (t) = f SIMPLE

i (1, αjm,nj (t) , h) . (17)

In addition, if the average number of memory accesses does
not reach a by the end of the process, the overflow fraction
of MHT is given by

γMHT =
d∏

j=1

γt
j (1) . (18)

Proof: By the definition of the MHT scheme, it follows
immediately that nj (t) = γt

j−1 (t)nj−1 (t); since n1 (t) =
n · t (all elements go through the first subtable), we get that
nj (t) = n · t ·∏j−1

k=1 γt
k (t).

The claimed result is immediately derived by setting the
right parameters for each SIMPLE scheme within each subtable
Tj ; namely, its total number of buckets is αj ·m and the number
of elements by time t is nj (t).

C. Optimality of the MHT Scheme

We now prove that MHT is optimal on a given range of a,
and in particular we show that the overflow fraction γMHT of
the MHT scheme reaches the overflow fraction lower bound
γLB for such a. Further, we demonstrate that MHT is optimal
when its subtable sizes follow a specific geometric decrease.

Theorem 6: Consider an 〈a, d, c, h〉 MHT hashing scheme
in which each subtable Tj has αj ·m buckets, with

∑
αj = 1.

Further, let p (a) = γt
SIMPLE (1,m, a · n, h) denote the overflow

fraction of the SIMPLE scheme with a · n elements. Then,
for any values of d, c, and h, the 〈a, d, c, h〉 MHT scheme
solves the OPTIMAL HASH TABLE CONSTRUCTION PROBLEM
whenever it satisfies the two following conditions:
(i) The subtable sizes αj ·m follow a geometric decrease of
factor p(a):

αj =

(
1− p (a)

1− p (a)d

)
p (a)j−1 ; (19)

(ii) a ≤ aco
MHT, where aco

MHT is given by the solution of the
following fixed-point equation:

aco
MHT =

1− p (aco
MHT)

d

1− p (aco
MHT)

. (20)

Proof: Consider a specific time t0, in which we exhausted
all a ·n memory accesses. Up until this time, we used exactly
nj (t0) times the hash function Hj (x) in subtable Tj . Since we
aim at an optimal overflow fraction, the necessary condition
on the distributions of hash function, given in Theorem 2,
immediately implies that

αj =
nj (t0)
n · a . (21)

By substituting the expression for αj in (15), we get:
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γt
j (t0) = γSIMPLE

(
1,

nj (t0)
n · a m, nj (t0) , h

)

= 1−
nj(t0)

n·a mh

nj (t0)
+

nj(t0)
n·a m

nj (t0)

·
h−1∑

i=0

(h− i) · 1
i!

(
nj (t0)
nj(t0)

n·a m

)i

e
− nj(t0)

nj(t0)
n·a m

= 1− mh

na
+

m

na

h−1∑

i=0

(h− i) · 1
i!

(na

m

)i

e−
na
m

= γt
SIMPLE (1,m, a · n, h)

= p (a)

It is important to notice that, quite surprisingly, γt
j (t0) does

not depend on j.
We now obtain the time t0 by observing that nj (t0) =

n · t0 ·p (a)j−1, thus αj = t0·p(a)j−1

a . Since
∑d

k=1 αk = 1, we
get

∑d
k=1

t0pj−1

a = 1, and therefore t0 is given by the sum of
a geometric series:

t0 = a

(
1− p (a)

1− p (a)d

)
. (22)

This, in turn, immediately gives us the claimed memory
partition αj of Equation (19).

We now turn to show that the overflow fraction is indeed
optimal. Notice that overflowed elements arise in two situa-
tions:

1) Elements which are rejected by subtable Td. By the
time t0, the fraction of overflowed elements out of
these which were considered by Td is γt

d (t0) = p(a).
Furthermore, since the total number of elements con-
sidered is nd(t0), we get that the total number of
elements which were moved by Td to the overflow list
is p(a)nd(t0) = n · t0 · p (a)d−1

p(a) = n · t0 · p (a)d.
2) Elements arriving after time t0 and are rejected without

any consideration, because the number of total memory
accesses is exhausted. By the definition of t0, the number
of such elements is n− nt0.

Hence, the overflow fraction of the MHT scheme with the
above memory partitioning is:

γMHT(a) =
n− n · t0 + n · t0 · p (a)d

n

= 1− t0

(
1− p (a)d

)

= 1− a(1− p (a))

= 1− mh

n
+

m

n

h−1∑

i=0

(h− i) · 1
i!

(na

m

)i

e−
na
m

By comparing γMHT(a) with Theorem 1, we immediately
conclude that the MHT scheme with the above partitioning
solves the OPTIMAL HASH TABLE CONSTRUCTION PROBLEM
for the given a.

Finally, we observe by Equation (22) that as a increases,
the time t0, in which all memory accesses are exhausted,
also increases. This implies that preserving the tightness to
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Fig. 7. Overflow fraction as a function of a with d = 4, h = 4, c = 1.
OP(a) denotes the optimal partition of MHT for a as obtained by Theorem 6.

the lower bound can continue only until aco
MHT, when t0 = 1.

In the above theorem, for any a ≤ aco
MHT, we found a

specific partition of MHT that achieves optimality. Note that
the overflow fraction can still be improved beyond aco

MHT, albeit
without preserving tightness to the overflow fraction lower
bound γLB.

D. Case Study - A MHT 〈a, 2, 1, 1〉 Hashing-Scheme

In the following section, we consider a specific MHT scheme
with h = 1, d = 2, and m = n (i.e. with load c = 1). For this
specific case, we can provide closed-form expressions for the
cut-off point and the overflow ratio, by directly solving the set
of differential equations in Equation (13). In case h = 1 and
d = 2, this set is reduced to:

df0,1 (t)
dt

= − 1
α1

f0,1 (t)

df1,1 (t)
dt

=
1
α1

f0,1 (t)

df0,2 (t)
dt

= − 1
α2

f0,2 (t) · f1,1 (23)

df1,2 (t)
dt

=
1
α2

f0,2 (t) · f1,1

where f0,1 (0) = f0,2 (0) = 1 and f1,1 (0) = f1,2 (0) = 0.
As in the SIMPLE scheme, we immediately get that

f0,1 (t) = e−
1

α1
t and f1,1 (t) = 1 − e−

1
α1
·t. By substituting

f1,1 in Equation (23), we get that:

f0,2 (t) = e

(
− 1

α2
·t−α1

α2
e
− 1

α1
·t

+C1

)

Where C1 is a constant, that is determined by the initial
condition, and equals to α1

α2
. It is also immediately follows that

f1,2 (t) = 1 − f0,2 (t). Thus, the overflow fraction γMHT(t) is
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given by:

γMHT(t) =
n− (α1mf1,1 (t) + α2mf1,2 (t))

n
= 1− α1f1,1 (t)− α2f1,2 (t)

= 1− α1

(
1− e−

1
α1
·t
)

−α2

(
1− e

(
− 1

α2
·t−α1

α2
e
− 1

α1
·t

+
α1
α2

))

= α1e
− 1

α1
·t

+α2e

(
− 1

α2
·t−α1

α2
e
− 1

α1
·t

+
α1
α2

)

In order to compute fa
MHT (t), we substitute f0,1 (t) , f1,1 (t)

and f0,2 (t) in Equation (14) and solve the resulting differential
equation:

dfa
MHT (t)
dt

= 2 ·
(
1− e−

1
α1
·t
)

+ 1 ·
(
e−

1
α1
·t
)

= 2− e−
1

α1
·t,

whose solution is:

fa
MHT (t) = 2t + α1e

− 1
α1
·t − α1

For the case we consider, p (a) = 1− 1
a + 1

ae−a. Thus, by
Theorem 6, we get a fixed point equation for aco

MHT:

aco
MHT = 2− 1

aco
MHT

+
1

aco
MHT

e−aco
MHT

with one positive solution:

aco
MHT = 1 + 2 ·W

(
1
2
e−

1
2

)
≈ 1.4777 (24)

where the Lambert W function is the inverse function of the
function ω(x) = xex [20].

At the cut-off point, assuming an optimal partition, the
overflow fraction is

γMHT(t = 1) = e−aco
MHT ≈ 22.8%.

Likewise, if n = 0.1m, the cut-off point is aco
MHT = 1.0507 and

the corresponding overflow fraction is γMHT(t = 1) = 0.26%.

VII. COMPARATIVE EVALUATION

Fig. 7 illustrates the influence of the memory partition on the
overflow fraction and the optimality of MHT. It was obtained
with d = 4, h = 4 and c = 1. All values were derived from
the analytical formulas above, except for the d-left hashing
scheme, for which we ran simulations with m = 4, 000, n =
16, 000 and d equally-sized subtables.

First, the solid line plots the overflow fraction lower-bound
γLB (a) from Theorem 1. Thus, no scheme can achieve an
asymptotic overflow fraction below this line.

As elements are successively inserted and the total num-
ber of memory accesses a · n increases, the overflow frac-
tions γSIMPLE (a) and γGREEDY (a) of the SIMPLE and the
GREEDY schemes follow this lower-bound line, respectively
until aco

SIMPLE

4
= 1 with γSIMPLE = 19.5% (Theorem 3), and

aco
GREEDY = 1.488 with γGREEDY = 6.00% (Theorem 4).
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Fig. 8. Cut-off points of GREEDY and MHT schemes, and the corresponding
overflow fraction, as a function of the load c, with bucket size h = 4 and
d = 4 hash functions.

On the contrary, in the case of MHT, for a given partition,
γMHT (a) does not go down along the lower-bound line. As
shown in the proof of Theorem 6 [21], for any given a, an MHT
scheme using the optimal geometrically-descending partition
for a will be strictly above the lower-bound line, then reach
it at a, then rebound and be above it again. This is indeed
illustrated using the optimal partitions for a = 1 and a =
aco

MHT = 1.697. The corresponding optimal overflow fractions
are γMHT (a = 1) = γSIMPLE = 19.5% and γMHT (a = aco

MHT) =
3.45%.

Last, we compare the performance of MHT with that of
the d-left algorithm, in which a = d = 4 [8], [9]. It can
be seen that d-left achieves an overflow fraction of γd−left =
3.17%, which is not far from the overflow fraction of MHT
with a = aco

MHT, while on average MHT saves more than half
of the memory accesses.

We conclude by comparing the MHT and GREEDY schemes.
Fig. 8(a) compares the respective cut-off points a = aco

GREEDY

and a = aco
MHT of GREEDY and MHT under different loads,

with h = 4 and d = 4. Clearly, the cut-off point of MHT is
larger, implying that its range of optimality is larger. Addi-
tionally, Fig. 8(b) shows the corresponding overflow fractions
γGREEDY (a = aco

GREEDY) and γMHT (a = aco
MHT), illustrating how

MHT can achieve a lower overflow fraction.
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VIII. CONCLUSION

In this paper we considered hash-based data structures
that have become crucial algorithmic building blocks for
contemporary network elements that handle and analyze large
amounts of data at very high speeds. For instance, for each
arriving packet, routers need to perform an address lookup and
several flow classification and identification operations, each
often relying on a hash table scheme.

Unlike traditional hash tables which guarantee only amor-
tized constant-time operations, in a networking setting hash
tables should provide a constant worst-case bound of d per
operation. Moreover, as the average cost per operation may
dictate the overall performance of the network element (e.g.,
its throughput or its power consumption), we considered hash
tables that also provide a constant bound a on this quantity.

Given a and d, we first presented a lower bound on the
overflow fraction—the fraction of elements that cannot be
stored in the hash table without violating these restrictions.
Then, we studied three hashing schemes: a simple single-
choice scheme (SIMPLE), a greedy multiple-choice scheme
(GREEDY), and a multi-level scheme (MHT). For all these
schemes, we first obtained an expression of their overflow
fraction as a function of a. By comparing with our lower
bound, we concluded that these schemes provide optimal fast
hashing for a specific range of a’s. In comparison, recently-
proposed schemes, such as d-left, are shown by simulations
to be far from the lower bound.

On the practical side, we were able to find the expected
overflow fraction of the evaluated schemes, which determines
the size of the required overflow list (for example, when
implemented in CAM). Also, for the well-studied multi-level
hash table scheme, we were able to prove that one can achieve
optimal performance when the subtable sizes follow a specific
geometric decrease. This confirms a widely-known rule-of-
thumb.
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