TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

The Crosspoint-Queued Switch

Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—This paper calls for rethinking packet-switch archi-
tectures by cutting all dependencies between the switch fabric and
the linecards. Most single-stage packet-switch architectures rely
on an instantaneous communication between the switch fabric
and the linecards. Today, however, this assumption is breaking
down, because effective propagation times are too high and keep
increasing with the line rates.

In this paper, we argue for a self-sufficient switch fabric by
moving all the buffering from the linecards to the switch fabric.
We introduce the crosspoint-queued (CQ) switch, a new buffered-
crossbar switch architecture with large crosspoint buffers and
no input queues, and show how it can be readily implemented
in a single SRAM-based chip using current technology. For a
crosspoint buffer size of one, we provide a closed-form through-
put formula for all work-conserving schedules under uniform
Bernoulli i.i.d. arrivals. Furthermore, we study the performance
of the switch for larger buffer sizes and show that it nearly
behaves as an ideal output-queued switch. Finally, we confirm
our results using synthetic as well as trace-based simulations.

I. INTRODUCTION
A. Background

This paper is about freeing the switch fabric. We want
to design a self-sufficient switching module that can switch
packets without permanently relying on the current states of
the input linecards, the output linecards, and the complex
centralized scheduler. Ultimately, our goal is to build a switch-
on-a-chip, i.e. a single-chip self-sufficient switching module.

Packet switch architectures are getting increasingly com-
plex, so we should rethink whether we really need this
complexity. As line rates increase to cope with demand in the
Internet core and in large datacenters, the popular input-queued
switch architectures prove unable to scale. Their complex
centralized schedulers cannot run at line rate, requiring a costly
memory speedup to hide their under-performance. As a result,
they are implemented as combined-input-and-output-queued
switches, with large queues in both inputs and outputs [1], [2].
Therefore, switching a packet needs complex permanent con-
trol communication between several modules spread across the
switch: the input linecards, the centralized arbiter, the switch
module, and the output linecards. While theory assumes that
any communication between these modules is instantaneous,
practice requires long and complex pipelines to mask effective
delays. In short, switch complexity is a difficult problem, and
higher line rates can only worsen it.

This work was partly supported by the European Research Council Starting
Grant n°210389, the Alon Fellowship, the ATS-WD Career Development
Chair, and the Loewengart Research Fund.

Y. Kanizo is with the Dept. of Computer Science, Technion, Haifa, Israel.
Email: ykanizo@cs.technion.ac.il.

D. Hay is with the Dept. of Electronics, Politecnico di Torino, Turin, Italy.
Email: hay @tlc.polito.it.

I. Keslassy is with the Dept. of Electrical Engineering, Technion, Haifa,
Israel. Email: isaac @ee.technion.ac.il.

T b P v =
=l BT A
.
s By /] B P
1] Ba/| B/ Bﬁ(
e e e | Mo o vy - B,
0| e/ Be/ B[(

Ol 02

(a) CICQ switch

o, o, o, oy

(b) CQ switch

Fig. 1. Illustration of the CICQ and CQ switch architectures, with inputs
1;, outputs Oj, and crosspoint buffers B;;. In the CICQ switch, the dashed
lines represent the communication between the linecards and the buffers.

Recently, combined-input-and-crosspoint-queued (CICQ)
switch architectures like IBM Prizma [3], [4] have generated
increased interest, because they appear simpler to imple-
ment [5]-[16]. As shown in Fig. 1(a), CICQ switch architec-
tures combine large virtual output queues (VOQs) in the input
linecards with a buffered-crossbar switch fabric. This buffered
crossbar typically holds a single packet buffer per crosspoint
(following common practice, we consider segmented fixed-
size packets). At each time slot, in a distributed manner, each
input can write up to one packet into an empty crosspoint, and
each output can read up to one packet from a full crosspoint.
Therefore, inputs and outputs can work independently without
relying on a centralized scheduler.

CICQ switches are especially appealing because they have
a simple architecture that can scale to high line rates. They
do not need a speedup of N, unlike output-queued and
shared-memory switches [17]. They also do not need a
complex centralized scheduler to match inputs and outputs,
unlike most input-queued and combined-input-and-output-
queued switches [1], [2]. Finally, they do not need multiple
switching stages, unlike load-balanced switches and parallel
packet switches [18], [19].

While CICQ architectures are attractive, they also assume
the existence of an instantaneous communication channel
between the linecards and the switch fabric: at each time slot,
input linecards need to know whether a crosspoint is empty in
order to write into it. However, since the linecard and switch
fabric racks are separated to decrease the power consumption
per rack [18], this assumption does not hold in practice, and the
round-trip communication time cannot be neglected in front
of a time-slot. For instance, the round-trip propagation time
can last up to 600 ns, assuming inter-rack optical fibers with
a maximum length of 60 meters and a propagation speed of
c/n = 2-108 m/s [20]. On the other hand, a time-slot lasts 2 ns,
assuming 64-byte segmented packets in next-generation OC-
3072 lines (160 Gbps) with a 60% segmentation overhead [21].

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

Therefore, a round-trip time is clearly not negligible in front
of a time-slot — in fact, it lasts some 300 time-slots, not even
counting Serializer/Deserializer (SERDES) delays, and this
number keeps increasing proportionally to the line rate [20].

The high effective propagation delay between the input
linecards and the switch fabric emphasizes the need to dis-
sociate them and cut any instantaneous back-and-forth control
communication. This is especially true for the CICQ architec-
ture, because hiding the propagation delay would require either
sizing crosspoint buffers to a round-trip time, moving the large
power-consuming input queues back into the switch fabric
rack, or relying on speculative algorithms without performance
guarantees [9].

B. The CQ Switch: Architecture and Implementation

In this paper, we introduce the crosspoint-queued (CQ)
switch, as illustrated in Fig. 1(b). In the CQ switch, all the
buffering is moved from the linecards to the switch fabric,
and therefore the input linecards do not hold input queues
anymore. Furthermore, the switch fabric is a buffered crossbar
switch with large crosspoint buffers.

The CQ switch relies on a self-sufficient switch fabric. As
usual, each incoming packet first goes through the packet
lookup-processing-segmentation pipeline at the input. Then,
the incoming packet simply arrives directly at its crosspoint
buffer. It is not queued before at the input and does not
rely on any control information before being sent to the
crosspoint buffer. If the crosspoint buffer is full, it simply
drops the incoming packet. Otherwise, the packet is queued
at its crosspoint buffer. Next, for each output destination, the
buffered crossbar picks a non-empty buffered crosspoint (if
any) and sends its head-of-line packet. Therefore, there is no
need for control communications between the linecards and
the switch fabric anymore.

Buffered crossbar switches with large crosspoint buffers
were briefly considered in the ATM literature as building
blocks of multi-stage switches (e.g., [22]-[25]). Unlike the
CQ switch, these switches were very small (usually, 2 x 2 and
4x4 switches) and since they were part of a multi-stage switch,
they often used traffic control mechanisms in order to avoid
packet drops, and relied on large input buffers at the ingress of
the multistage switch. An architecture with crosspoint buffers
of size one and no input queues was also considered in [10]
as an analysis tool.

The CQ switch fabric could be readily implemented on a
single chip. While the N? crosspoint buffers used to be pro-
hibitive, current crossbar switches are limited by the number
of pins required to get data on and off the chip, not by the die
area [8], [9], [21]. For instance, in a 128 x 128 CQ switch,
each crosspoint buffer could hold over 60 packets, assuming
an aggressive high-performance ASIC design with 64-byte
segmented packets, an 18 mm x 18 mm die with 70% memory
area and 30% crossbar and memory-decoder logic area [9], and
an SRAM cell size of 0.4 ym? (ITRS numbers for 2008) [26].
Further, the crosspoint buffer size is expected to keep growing
with SRAM density, roughly doubling every 2.5 years [26].

In addition, in order to obtain a high total throughput,
switches often need to use multiple crossbars in parallel

(by bit-slicing, time-slicing, or using multiple-stage switch-
ing). Therefore, switch designers can use these many parallel
buffered crossbars to increase the total buffer size or reduce
the buffer size per chip [12], [20]. For instance, keeping our
example of NV = 128 ports at 160 Gbps with a 60% segmen-
tation overhead, we would need a total switch throughput of
34 Tbps. But each crossbar can only switch up to 640 Gbps,
assuming 10 Gbps per 16 I/O pins, 5 Gbps per port, and
a conservative package with 1500 pins, including 1024 1/O
pins (up to 4800 pins are available today in aggressive ASIC
designs using ITRS specifications) [20], [26], [27]. Therefore,
independently of our switch architecture, we need some 50
parallel crossbars to get enough bandwidth. Consequently, to
keep the same total buffer size, we can now adopt a very
conservative design with higher die yields: for instance, by
using a 10 mm x 10 mm die, with 10% memory area and an
SRAM cell size of 1 um?2.

Moreover, CQ switch buffering could be reduced even fur-
ther by switching variable-size packets and removing packet
segmentation and reassembly [9], [12], [28]-[30]. In our
example, this would reduce the needed throughput and buffer
size by about 35%, i.e. the packet segmentation overhead.

C. The CQ Switch: Comparative Considerations

The CQ switch presents interesting characteristics when
compared to existing switch architectures. First, most practical
switch architectures currently assume infinite input queueing.
To the best of our knowledge, the CQ switch is one of the first
practical switch architectures without input queueing (except
for the architectures based on buffered-crossbars mentioned
above). Other such architectures have too low a throughput
at speedup one to be practical. In fact, the CQ switch is also
one of the only switch architectures to explicitly rely on finite
buffers, since a CQ switch with infinite buffers would simply
be an output-queued switch.

Consequently, heavy buffering disappears from input
linecards. This is one of the most significant implementation
advantages of CQ switches. Today, linecard buffers take about
half of their board space and a third of their power consump-
tion [31]. They rely on massive amounts of SRAM and DRAM
with fast access times, require complex scheduling algorithms
to manage these SRAM and DRAM modules, and can take a
significant amount of time to design [32]-[34]. Therefore, no
linecard buffering also means reduced design time, complexity,
and power consumption. This makes CQ switches especially
suited for switch implementations in large datacenters (low
complexity) and networks-on-chip (low power consumption).

In addition, the CQ switch can be seen as the theoretical
continuator of the shared-memory (SM) and output-queued
(OQ) switches. The SM switch shares memory dynamically
between inputs and outputs, resulting in a memory speedup
of N for reads and writes; the OQ switch shares memory
statically between outputs and dynamically between inputs,
resulting in a speedup of N for writes and 1 for reads. The
CQ switch goes one step further in the static sharing: it shares
memory statically between inputs and outputs, resulting in a
speedup of 1 for reads and writes. Thus, in contrast with the

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

shared-memory switch, it can be seen as a private-memory
switch.

As a consequence of the private-memory property, the
CQ switch provides a natural flow isolation. Unlike shared-
memory switches, it inherently isolates misbehaved flows
from well-behaved flows coming from different inputs and
sharing the same output. Thus, it is free of the buffer-hogging
effect [20].

Finally, recent papers argue that due to TCP mechanisms,
switch buffers can be much smaller than previously believed,
and justify the removal of the gigabits of data buffering cur-
rently present in input linecards [35]-[38]. Together with the
advances in SRAM density, they make CQ switches possible
today, while they were not ten years ago.

D. Performance Analysis

We introduced above the CQ switch architecture and ex-
plained how it can be implemented as a single-chip self-
sufficient switching module. In this paper, we further analyze
its properties with both small and large crosspoint buffers.

First, with small crosspoint buffers of size one, we observe
that any work-conserving scheduling algorithm yields the
same performance when the arrival traffic is Bernoulli i.i.d.
and uniform. Using z-transforms, we derive a closed-form
expression for the throughput and average delay of the CQ
switch. This closed-form expression enables us to explore the
system behavior as a function of N, and in particular to prove
that the CQ switch throughput approaches 100% as N goes
to infinity.

Later, we consider larger crosspoint buffers and model
their performance with commonly-used scheduling algorithms:
longest-queue-first (LQF), random, and exhaustive round-
robin scheduling. When the buffers are larger than 1, closed-
form throughput expressions are hard to obtain. Instead, we
provide throughput models, and check their accuracy using
simulations. For instance, we find that LQF-based CQ switches
and OQ switches have close overflow probabilities, using
uniform, non-uniform, as well as bursty long-range-dependent
traffic.

Finally, we present simulation results in which we analyze
the performance of CQ switches using synthetic inputs as well
as real-life traces, and show that CQ switches typically reach
a throughput close to 100% for reasonable crosspoint buffer
sizes.

We now introduce the CQ switch model and notations
in Section II. Then, we provide closed-form performance
expressions for crosspoint buffers of size one in Section III.
Later, we analyze the behavior of a CQ switch with larger
crosspoint buffers and the LQF, random, and exhaustive round-
robin algorithms in Sections IV, V and VI, respectively.
Finally, Section VII provides simulation results using synthetic
inputs as well as real-life traces.

II. THE CROSSPOINT-QUEUED SWITCH MODEL
A. The Crosspoint-Queued Switch Architecture

A crosspoint-queued (CQ) switch is a buffered crossbar
switch that has no memory but in the crosspoints of the

buffered crossbar; i.e., it neither contains queues in the inputs
nor in the outputs (as shown in Fig. 1(b)).

Let N be the number of switch inputs (outputs), and B
the memory size of each crosspoint buffer; that is, the CQ
switch has N2 crosspoint buffers and can hold up to B - N2
packets. Furthermore, let B;; denote the buffer that resides in
the crosspoint of input ¢ and output j.

Following common practice, we assume that time is slotted
into fixed-size time-slots and that packets have a fixed size, i.e.
segmentation and reassembly are done outside the switch [20].
Each of the time-slots is conceptually divided into two phases:

o The arrival phase, in which packets arrive at the switch
and are stored in the crosspoint buffers. If a packet arrives
at input ¢ and is destined for output 7, it is stored in buffer
B;; — unless B;; is full, in which case the packet is
dropped upon arrival.

e The departure phase, in which packets leave the switch.

During the departure phase, for each output, the buffered
crossbar picks independently and in parallel a non-empty
buffered crosspoint (if any). It then sends its head-of-line
packet to the output, in order to maintain packet ordering. For
simplicity, we say that the output schedules the packet, even
though the buffered crossbar is the one to effectively select
it. Each output may use any scheduling algorithm in order to
decide which packet to serve. Scheduling algorithms consid-
ered in this paper include the LQF, random, and exhaustive
round-robin algorithms.

B. Definitions and Notations

In this section, we successively define several properties of
scheduling algorithms, traffic arrivals, and switch performance
measures. We start with scheduling algorithms.

Definition 1: A scheduling algorithm is called work-
conserving if each output always services a buffer whenever
one of the buffers destined to it is non-empty.

Example 1: The LQF, random, and exhaustive round-robin
scheduling algorithms are work-conserving.

The switch performance strongly depends on the packet ar-
rival pattern. A common example is the Bernoulli independent
and identically distributed (i.i.d.) arrival process, in which at
each time-slot ¢, a single packet arrives at input ¢ for output
j with probability A;; > 0, independently of the past and of
other inputs. Let the ftraffic matrix be A = [)\;;], the arrival
rate at each input ¢ be)\j:” = Z;V:1 Aij, and the arrival rate

at each output j be \7"* = Zf\il Aij. We can now define the
uniform traffic process.

Definition 2: A Bernoulli i.i.d. arrival process is uniform
with load p € [0, 1] iff all the elements in its traffic matrix A
are equal to 4.

We now define several performance measures of a switch.
Note that a switch performance depends on several parameters,
including its traffic arrival pattern, its scheduling algorithm,
and its size (N and B).

Definition 3: The throughput of a switch component is the
limiting ratio of the cumulative number of packets entering it
successfully by the cumulative number of packet arrivals, as
time goes to infinity (whenever this limit is defined). More

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

specifically,

(i) The crosspoint throughput T'P;; of buffer B;; is the limiting
ratio of the cumulative number of packets entering B;; by the
cumulative number of packets arrived at input ¢ for output j.
(ii) The column throughput T P, of output j is the limiting ra-
tio of the cumulative number of packets entering the crosspoint
buffers corresponding to output j by the cumulative number
of arrived packets destined for output j.

(iii) The switch throughput TP is the limiting ratio of the
cumulative number of packets entering any crosspoint buffer
by the cumulative number of arrived packets.

Definition 4: The delay of a switch component is the lim-
iting average delay of packets that are traversing this com-
ponent, whenever defined. Specifically: W;; is the crosspoint
delay of buffer B;;, W, is the column delay of output-port
J, and W is the switch delay.

It is important to note that in CQ switches the performance
of each output can often be analyzed independently, because
the CQ switch architecture isolates packets destined to each
output. In fact, as long as the traffic process from input 7 to
output j is independent of other traffic processes, we will be
able to study CQ switches “column-wise”.

IIT. CROSSPOINTS OF S1ZE ONE

This section investigates CQ switches with a crosspoint
buffer size of one and Bernoulli i.i.d. uniform traffic of load p.
We obtain exact closed-form expressions for the delay and the
throughput of a CQ switch under these settings. Remarkably,
these results hold for any scheduling algorithm, as long as it
is work-conserving.

A. Equivalence of Work-Conserving Schedulers

Our objective is to prove that under Bernoulli i.i.d. uniform
arrivals, a CQ switch with a crosspoint buffer size of one has
the same performance independently of its work-conserving
scheduler. We first demonstrate several general properties of
the CQ switch before proving this result.

The next proposition points out a link between the through-
put and the probability that a buffer is full in the steady state. It
is true for any Bernoulli i.i.d. traffic (not necessarily uniform),
and any crosspoint buffer size (not necessarily one). Its proof is
essentially based on a discrete version of the PASTA property:
in this case, Bernoulli arrivals see the time average of the
probability that the buffer is not full.

Proposition 1: In a CQ switch with Bernoulli i.i.d. arrivals,
the crosspoint throughput T'F;; of buffer B;; is equal to
the probability that a packet arriving to B;; is not dropped.
Equivalently, if PZ; denotes the steady-state probability that
buffer B;; stores k packets before the arrival phase, then
TP; =1- Pi?.

Proof: The steady-state probability that a packet both
arrives and is successfully absorbed at buffer B;; in an
arbitrary time slot is A;; - (1 — Pi]?) since these two events

B
are independent. By Definition 3, T'P;; = M, hence
the result. N []

We use Proposition 1 to deduce the following equivalent
method to evaluate the column throughput of a CQ switch us-
ing steady-state probabilities. Again, it holds for any Bernoulli
ii.d. traffic and any crosspoint buffer size.

Proposition 2: Consider a CQ switch with a work-
conserving scheduler for output j. Let 7'('? denote the prob-
ability that all the crosspoint buffers of column j are empty
after the arrival phase. Then, the column throughput T'F,; of

0

column j is TP, = 1];775)\
g Nid
Proof: We denote the steady-state rate of absorbed pack-
ets in all the buffers at the crosspoints of output j as v;, and
the steady-state rate of served packets in all the buffers at
the crosspoints of output j as §;. By Definition 3, the column

throughput of output j is TP, = 1371 In the steady state,

the rate of absorbed packets is equal ﬁ)lthé rate of served ones.
Moreover, assuming a work-conserving scheduling algorithm,
the rate of served packets in all the buffers at the crosspoints
of output j is equal to the probability that at least one of the
buffers is not empty. Therefore v; = 6; = 1 — w?, and the
result follows.]

The next proposition characterizes the average delay
through a CQ switch with B = 1 and uniform Bernoulli
ii.d. arrivals as a function of its throughput. It enables us
to characterize the average delay of the CQ switch as well as
its throughput in the following theorems.

Proposition 3: In a CQ switch with B = 1, uniform
Bernoulli i.i.d. arrivals of load p, and throughput 7T'P, the
switch delay is W = % . (# — 1).

Proof: By Proposition 1, P}, =1 —TP,;. Since B =1,
Pilj is also the expectation of the number of packets stored in
the buffer. Further, in the steady state, the probability that a
packet arrives at the buffer in an arbitrary time slot is \;; =
p/N, and by Definition 3, the probability that it arrives and is

absorbed in the buffer is (p/N)T P;;. Hence, applying Little’s
1-TP,

law on By; yields Wy; = 5 —pL. By symmetry, we obtain
N 1]
the required expression for the switch delay. |

We now prove that for a CQ switch with B = 1 and a
uniform Bernoulli i.i.d traffic pattern, every work-conserving
scheduling algorithm yields the same throughput and delay.
Therefore, analyzing the throughput of any work-conserving
algorithm suffices to characterize all other work-conserving
algorithms.

Theorem 1: For a CQ switch with B = 1 and uniform
Bernoulli i.i.d traffic pattern, every work-conserving schedul-
ing algorithm obtains the same throughput and delay.

Proof: Each output j provides services independently
of other outputs. Therefore, without loss of generality, we
can focus on an arbitrary column j, and consider its column
throughput T'P,.,. Let M denote the Markov chain that rep-
resents the number of occupied buffers in column j before
the arrival phase. Then M is a Markov chain over the state
space S = {0,...,N — 1} with some transition matrix 7.
Since each work-conserving scheduling algorithm provides
the same number of services for a given state s € S, and
the number of packets arrived at the empty crosspoint buffers
is independent of the scheduling algorithm, then each work-
conserving scheduling algorithm yields the same transition

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

matrix 7" of the Markov chain M. Further, M is ergodic.
Therefore, each work-conserving scheduling algorithm also
yields the same probability w? that all the buffers are empty
after the arrival phase. By Proposition 2, it follows that T'P,
is the same for each such scheduler, implying that all work-
conserving algorithms obtain the same throughput. Further, by
Proposition 3, they obtain the same delay as well. |

B. Closed-Form Performance Results

We found that in a CQ switch with B = 1 and uniform
traffic, all work-conserving schedules have the exact same
performance. This enables us to provide a closed-form formula
of the switch throughput and delay, by directly solving the

Markov chain that characterizes the system.

Theorem 2: For a CQ switch with B = 1, uniform
Bernoulli i.i.d arrivals of load p, and any work-conserving
scheduling algorithm, the switch throughput TP and the
switch delay W are

1
TP = —

[1
p 1+Z

— & and

N (1
== (=-1).
v p (TP)

Proof: Let X, be a random variable representing the
number of occupied crosspoint buffers destined to some output
7 before the arrival phase of time-slot ¢. Since the scheduler
is work-conserving and X is evaluated immediately after the
departure phase of time-slot ¢ — 1, we cannot have X; = N.
Therefore, as in the proof of Theorem 1, X; follows a
Markov chain on state space S = {0,..., N — 1}. Further,
let p = £ be the probability that a packet arrives at some
input ¢ and is destined for some output j at time-slot ¢, and
let ¢ = 1 — p. Then the state transition matrix of the Markov
chain is provided by:

q

(m) - H;ﬂzl

.
(q‘jl)] .

where ¢ =1

Pmk = PI‘(Xt =]{3‘th1 = m)

N—m —m 11—
(Nom)pF Nk (i < k4 1) and
= notm=%k=0
NpgV =1+ ¢V m=k=0
0 otherwise

2

This transition matrix results from simple probabilistic ar-
guments. For instance, the first case intuitively reflects the
fact that for X, to increase by k& — m packets, it first needs
to increase by £ — m + 1 packets before the column is
served and a packet departs. This happens if a subset of
k —m + 1 crosspoints out of the N — m empty ones receive
a packet, and the crosspoints in the complementary subset do
not receive any. Now, in order to determine the throughput
of the switch, we focus on the steady-state probability vector.
Specifically, let p; be the steady-state probability to be in state
i€8 ={0,...,N —1}. Then by definition,

N-1 N-1
bi = Z PmPmi, and Z pi = 1.
m=0 1=0

3)

As in [39], we now compute p; using the following z-
transform of the sequence {po, p1,...,PN—1}:

N-1 N-1
P(z) =Y pi" 1 =Y pyoiest)
i=0 k=0
Substituting Equation (3) in Equation (4),
N—-1N-1
P(Z) = Z Pm mzZ -
=0 m=0
N-1 N-1
= Pm Z Pz)
m=0 i=

On the other hand, from Equation (2) and the Binomial
Theorem, for m € {0,..., N — 1},

N-1 N—-1—i
Zi:o Pz !

_ (p—i—zq)N_m m#o
(p+2q)" + gVt — NN m =0
1+ (z=1)g" ™™ m#0
A4+ G- —(z=1)¢"N"1 m=0

Thus, inserting these equations into Equation (5), we get

P(z) = —po(z—1)g"2N"1
N-1
+Y o+ (z=1)g" "
m=0
N-1
= —po(z—1) v lz (Nﬂ; 1) (z — l)ml
+A+ G- PA+(z-1)q), ©
N—1

where the last equality comes from the expansion of z
and from the definition of P (1+ (2 —1)¢q) (Equation (4)).
Further, as defined in Equation (4), P(z) is a polynomial of
degree N — 1, which can also be written as a polynomial of
the same degree but in the neighborhood of z = 1:

)

N-1
E a; (z—l
=0

Thus, using Equation (4), the Taylor series expansion yields
coefficients a; for 0 <7 < N — 1:

P(Z)(T) B N-—-1 m
Q= % = (.)pN—l—nL 3
7! — \i
Using the normalization condition in Equation (3),
i N-1
= mgo <O>pN_1_m = ; pi=1 ©)

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

Now, by substituting Equation (7) in Equation (6) and defining
y=z—1:

N-1
m
E amy =
m=0

By comparing the coefficients of " on both sides of the above

expression for m € {1,..., N}, we get:
m N— m _
U1 Tgm — Qm = Po (=) i """ m#£N (10)
aN-1 = Po m =N

In Equations (9) and (10) we have a set of NV + 1 equations,
with N 41 variables (po, ag, a1, ..., n—1). In order to solve
it, we first divide the equations above by [T
m. Thus:

1 T q],foreach

] N-—1

= poq m=1

Qo — —1
1-at N—1\ N-m
po(;m_1)a

Omo1 o _om o — l<m<N

m—1 q]» Hm q]» m—1 qJ
j=1 1—gqJ j=1 1—qJ

aAN-1 = Po

j=1 1-—qJ
m=N
an

Summing all equalities in Equation (11) form =1,..., N—1,

N-1 N—l)

po(m 1

e p——
m=2 H qJ
By Equations (9) and (11), ap = 1 and aey—1 = py, thus:

aON-—1
N—-1 ¢
Jj=1 1—qj

N—m

oy — =pog" '+

N—-1 Nfl)

_ Po bo (m 1 =l
N-1 J
Hj:1 lij m=2 H q_‘l

N—m
And by simplifying the above equation:

1 N—-—m—1
Po\ SN—T q +Z >
<Hj_1 1—qJ m= IH
— N-1 1— ¢
N-1 N—m—1 - —q
e)

j=1

=pog" '+

Nl)

]11q./

This implies that,

o (e T (a7 -)

Recall that pg is the probability that all the buffers are empty
before the arrival phase, while 77? is the same probability after
the arrival phase, which happens if and only if all the buffers
were empty before the arrival phase and no packet arrived.

Thus w? =po- ¢V, ie.

0 _ q
Ty

e e (T (T - 1)

; 12)

and the throughput 7'P of the system is given by Proposition 2.
Moreover, using Proposition 3, we also get the column delay.
Finally, by symmetry, column and switch performances are
equal. |
The above closed-form expression can be used to compute two
direct corollaries. The first corollary presents the throughput
of a 2 x2 CQ switch, which is retrieved simply by substituting
p=1and N = 2 in Equation (1).

Corollary 3: Using any work-conserving schedule, the
throughput of a 2 x 2 CQ switch with B = 1 and a uniform
traffic pattern of load p =1 is %

Likewise, the closed-form expression yields the following
asymptotic result for CQ switches with large port count. Note
that a similar result previously appeared in [10], albeit with
an incomplete proof [40].

Corollary 4: Using any work-conserving schedule, the
throughput of an N x N CQ switch with B = 1 and a uniform
traffic pattern of load p =1 goes to 1 as N — oco.

Proof: We directly find the limit of the expression in
Equation (1). We first focus on the denominator, and find its
limit as N — oo, i.e.:

N-1 m

: N-1\ _

Nt 1(m)q [T~
m= j=

We first substitute (¢7/ —1) = (e=/™9¢—1), and remind
that ¢ = 1 — £ depends on N. Thus, for a fixed m and
as N — oo, the product Hm_l (e=9™ma —1) grows like
[[Lj-(=Ing)=m! (- lnq) Hence, as N — oo,

1+Z P (e T (a7 - 1)

(Nm)q mm! - lnq) (14 0(1))
—Z L (N mt (F32) (1 o(1))

Recall that ¢ = 1 — £, yielding that A}Enoo % = £. More-

N=1) !
over, for a fixed m, % tends to 1 as N — 00, thus the
limit of the denominator is]\;lm 1+ Zm 1P (1+0(1)) =

1 £ we substitute it in the expression in Equa-
tion (l) and conclude that the throughput limit as N — oo is
1.]

IV. LQF SCHEDULING

In the next three sections, we successively analyze three
CQ switch scheduling algorithms: longest queue first (LQF),
random, and exhaustive round-robin.

In an LQF-based CQ switch, each output schedules the
longest queue in its column, resolving ties uniformly at
random. In this section, we compare the performance of a
CQ switch using LQF scheduling and the theoretically-optimal
output-queued (OQ) switch with the same total buffer size.

A. Deterministic Guarantees

Consider a traffic pattern for which the throughput of the
0Q switch goes to one when B goes to infinity. We want to
prove that the throughput of the LQF-based CQ switch goes

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

to one as well. We show it deterministically, using the fact
that LQF tends to equalize the buffer occupancy.

Theorem 5: For any traffic pattern, the throughput of an
LQF-based CQ switch with crosspoint buffer size B is at least
the throughput of an OQ switch with output buffer size 2B —1
and at most the throughput of an OQ switch with output buffer
size NB.

Proof: Consider any arrival process, and fix a specific
instance of that process, denoted Ajy. Notice that Ay is a
deterministic sequence of arrivals.

Fix a column j, and denote by M; the number of packets
stored in the most occupied buffer in column j and time-slot
t before the arrival phase and N; be the number of packets
stored in the second-most occupied buffer (in time slot t). If
at time ¢ = 0 all the buffers are empty, the LQF scheduler
guarantees that for every time slot t > 0, M Jt - N Jt < 1 (this
can be easily shown by simple inductive arguments).

Hence, for any time slot ¢, if a packet is dropped then there
are at least 2B — 1 stored packets in the column j.

We now turn to show that the throughput of an OQ switch
with buffer size 2B —1 at each output, is at most the throughput
of an LQF-based CQ switch with buffer size B at each
crosspoint.

Let QCQJ be the number of packets stored in column 5 of
the CQ switch in time slot ¢, and Qt 9 be the number of
packets stored in the queue of output j in the OQ) switch in
time slot ¢. The following induction shows that for any time
slot ¢t @ 0Q; > QOQJ

o Induction basis: In time slot ¢ = 0 all the buffers are

enépty, both in the CQ switch and the OQ switch, thus

=Q; ©%@i — 0, and the claim holds.

. Inductzon step: Let x be the number of packets destined

for output j that arrive at the switches at time-slot ¢ 4 1.

The proof follows by case analysis: If the CQ switch does

not drop a packet of column j at time ¢ then @, +Ql =

max{0, Q, GQ 4y 1} > max{0, Q; OQ 4y 1} >

Qtoﬁj, where the first inequality follows by the induction

hypothesis and the second inequality follows from the fact

that the OQ switch can still drop a packet at time-slot t.

On the other hand, if the CQ switch drops a packet of

column j at time ¢ then there are at least 28 — 1 packets

stored in this column, implying that @, oL >2B-2>

oQ
Qt+1J .

Since both scheduling algorithms are work conserving,
QCQJ > QOQJ implies that for any time slot ¢, the number
of successfully transmitted packets by the CQ switch is no
less than the number of those transmitted by the OQ. Both
switches also have the same arrival traffic Ay implying that
for any time slot ¢, the number of packets dropped by the OQ
switch is at least those dropped by the CQ switch; namely, the
throughput of an OQ switch with buffer 28 — 1 is at most the
throughput of an LQF-based CQ switch with buffer B.

The fact that the throughput of an LQF-based CQ switch
with buffer B is at most the throughput of an OQ switch with
buffer VB follows by similar arguments. |

Corollary 6: For any traffic pattern, whenever defined, the
throughput limits of LQF-based CQ switches and OQ switches

are the same when B goes to infinity.
Proof: Assuming that the limit exists, the above claim
follows immediately from Theorem 5 by the squeeze theorem.
|

B. Statistical Model

In practice, under a large variety of traffic patterns, LQF-
based CQ switches behave quite similarly to OQ switches with
the same total buffer size. The intuition is that as the buffer size
increases, the effects of the static buffer partitioning disappear
because of the LQF equalizing effects. This is intuitive for
uniform Bernoulli i.i.d. arrivals, but appears to hold as well
for non-uniform Bernoulli i.i.d. as well as bursty long-range-
dependent traffic.

Consequently, we model the statistical behavior of LQF-
based CQ switches using OQ-based models. In particular,
in the framework of large deviations theory [41], we model
the overflow probability Pj of LQF-based CQ switches in
column j as being equal to that of the OQ switch, i.e. to
the probability that the OQ buffer occupancy Q]-OQ of output
7 exceeds some given value b assuming infinite buffers and the
same arrival pattern. Then we obtain the following model
for P; (we prove the OQ overflow probability result using
large-deviations theory [41]).

Theorem 7: The overflow probability P; in column j of an
LQF-based CQ switch with total buffer size b and Bernoulli
iid. arrivals of admissible rate matrix [);;] can be modeled
by Pj ~ e%"", where

0* — hm

mga%foQ:>b»

N
0: log(1—Xi+\ie?)<6%. (3
{22% 2 Tog (1= A + Aie”) }“

Proof: We rely on [41], Theorem 1.4 and Lemma 1.7,
which claims that the rate function I (b) is given as follows:

1) = nf A’ (1 n i’) (14)
€
= b{sup@:A(G) <9}. (15)
0>0

where A is the log-moment generating function of the input
process, and A* is its convex conjugate.

The log-moment generating function of a Bernoulli process
with parameter)\ is given by 1 — X\ + Ae’. Since the total
input process to each output consists of independent processes
(from every input), the total log-moment generating function is
the sum of all log-moment generating functions. The claimed
result follows.]
This model is compared against simulations in Section VIL.

V. RANDOM SCHEDULING

Our objective is to model the performance of the random
scheduling algorithm, in which each output picks uniformly at
random a buffer to serve.

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

A first approach is to model the states of all the different
crosspoint buffers as independent. However, this approxima-
tion is too crude, because the buffer occupancies in the same
column j are typically correlated.

Therefore, we use a finer model based on conditional
probabilities. For any given input ¢ and output j, we study the
conditional probability that buffer B;; is empty in the current
time-slot given that all the buffers {B;, Baj, ..., By—1);}
from the inputs with smaller indices are empty as well. We
then multiply all these conditional probabilities to get the
probability that all the buffers in column j are empty given
that the first one is empty, i.e. given that any buffer is empty
by symmetry. We obtain the following model:

Proposition 4: The throughput TP of a CQ switch with
a buffer size B and a random scheduling algorithm under
uniform Bernoulli i.i.d. traffic arrival can be modeled by

pl—s B
_ _ 0
TP—<1 (S > >P,

using the solution to the following set of three equations with
three unknowns (P, s, s,):

(16)

o= Lkt
Po. ZZB;—OI ((K,Elp—;z> + (%(i—s))] -1
s = (1 xf@jﬁﬁgﬁwm+0—u—ﬁfy
(1-P°(1—£))(N—k+1)—14(P°(1- &))"V
(1-PO(1-£))*(N—k+1)(N—k)

Proof: First, for a fixed column j and a given B, we use
Definition 3, Proposition 1 and Proposition 2, to find a relation
between P} and m:

E:Nflffﬁ): =

=1

a7)

Using symmetry (there exists some P* € [0,1], such that
for all 7 and k, P{; = P%), and the fact that for each i,

ZkB:O P5 =1, we get:

B—1
I
=0

Let Xj’ ; (t) be the number of packets stored at B;; at
the beginning of time-slot ¢, and let X, (¢) be the number
of packets stored at B;; between the arrival and departure
phase at time-slot ¢t. Within each column, we will focus on
prefixes of crosspoint buffers. For each k € {1,..., N—1}, let
Y, () 2 S, X5 (t) (namely, Y, (t) counts the number
of packets stored on the first k& buffers of column j at time-slot

- _ A —k -
t). Similarly, let Y, (¢) = >, X, ; ().

(18)

Assuming that the system is in steady-state

we fix a column j, and evaluate the probability
A

PYE Pr (X[, (6) = 015 (£) = 0).

We start by considering an arbitrary time-slot ¢, and eval-
uate the probability that all crosspoint buffers in the prefix

{Bij,...,By;} are empty before the departure phase at time-
slot t — 1, given that they are empty after it; namely,

1>

Pk:

Pr (Y,;j (t—1) = 0)Y;", (t) = 0)

Pr (o, (t=1) =0)
Pr (kaj (t) = o)
Pr (kaj (t) = 0], (t— 1) = 0)

) HO@@—D=®u—mmﬁl

Pr (Y,;j (t) = o)
= (1-p/N),

where Equation (19) stems from the fact that each buffer is
empty after the arrival phase if and only if it is empty before
the arrival ph ase and no packet arrived at it.

In addition, given that kaj (t) = 0, the only possible values

of Y, (t — 1) are 0 or 1. Therefore,

19)

PEEPr (Vi (- 1) = 15 () =0) = 1— (1= p/N)*.

We now assume independence between the status of the
buffers at time-slot ¢ — 1, and compute the probability that
Bj.+1,1 will be served during the departure phase, given that
Y,; (t —1) = 0 and that X, , , (¢ — 1) = 1. Denote the event
that B;; is served in time-slot t by S;; (), then :

Pk

AN _ _
he 2 Pr(Sut- DY (-1 =0,X0,, (1) =
N

S =) ()

1o

(1 - PO) (Np +1)

Q

where N, = N — k — 1, and P! is the probability that a
certain buffer stores [packets after the arrival phase, (and in
case [=0, it is equal to P? (1 — £)).

Similarly, given that Y, (t—1) = 1 and that
Xpy1,;(t—1) = 1, we approximate the probability that
Bj,+1,1 will be served during the departure phase:

>

Pl 2 Pr(Sy(t- DY (1) =1, X, (- 1) = 1)
N

S () ()

Np+2)

Q

(1—150) (N +2) —1+ PO

(1 - PO)2 (Ni +2) (Ng + 1)

Tying it all together, we get an approximation for the
probability that By 1 is served in time-slot ¢ — 1:

k
= pk Pl + Pk, PE.

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

This, in turn, provides a better evaluation of P,S:

A
P} = Pr(Xpi11=0[Ys =0)

~ PO —|—Plsk, (20)

where the probability P! that a certain buffer stores exactly 1
packets after the arrival phase is equal to PO £ + P! (1 — £).

. . 0.
Thus, we get an approximation for 7’

N-1
7r;) ~ H P (1 - %)
k=0

Finally, we find for every ¢ € {1,..., B — 1} a connection
between P’ and P°. We assume that the probability of a
certain buffer to get served, given that it is not empty, is
independent of the exact number of packets that are stored
in the buffer. One may find for every ¢ € {1,...,B—1}
a connection between P’ and P° by solving the equations
reflecting the Markov chain of a single buffer where all the
possible number of packets in the buffer are the states of the
chain. Going this way will yield eventually a B-th degree
polynomial which is in general hard to solve. We will now
show an elegant way to obtain the same result.

We are interested in Pr (S;;| X (t) > 0), and we evaluate
it in the following way:

Pr(s (1) = Pr(Sy)Yy, (1) =0)Pr(Yy, () =0)
+ Pr((O 1Yx, ()>0)Pr(Y]\7j(t)>O)
0-71'?4—%-(1—71'0)

J
(1)
N
And on the other hand:

+ Pr(S <>|X (6> 0) Pr (X; (1) > 0)
0- PO+ Pr (S (£) X, (t) >)(1—P0)
Pr (Sy (1) 1X; (1) > 0) (1= P°)

where P = P° (1 — £). By equaling the last two equations
we get:

2L

(1—77)

Pr (SZJ|XZ; (t) > 0) =

By symmetry we denote Pr (Si;|X; (¢)
¢ and j.

Now, assuming that the probability of a certain buffer to get
served, given that it is not empty, is constant for every number
of packets that are stored in the buffer, we can easily find for
every i € {1,...,B — 1}, a connection between P’ and P°:

, ~(1—s) ' o
PP=(>~—~—>]| P
<(1—11v)8>

One can now solve Equations (17), (21) and (23), and apply
the solution to Proposition 1, Definitions 2 and Definitions 3

> 0) as s for every

(23)

in order to approximate the switch throughput. This yields the
claimed result. |

VI. EXHAUSTIVE ROUND-ROBIN SCHEDULING

We now want to model the throughput of a CQ switch
operating with the exhaustive round-robin algorithm. This
algorithm considers all crosspoint buffers in a round-robin
order and, upon finding a non-empty buffer, services it until
it is empty. Thus, this algorithm corresponds to a polling
system with zero switch-over times [42]. As later shown in
simulations, it typically has a higher packet throughput for
variable-size packets than a round-robin algorithm, because it
tends to read together all the cells of the same packet.

A natural throughput model relies on evaluating the average
steady-state cycle time g, i.e. the average number of time-slots
taken by the round-robin algorithm to visit all the crosspoints
in a given column. In the steady state, we would expect t
to be equal to the expected number of packets arriving at this
column within ¢(time-slots. Unfortunately, this first approach
to modeling throughput does not work, because sometimes all
the column buffers are empty. In this case, the zero switch-
over times cause an infinite number of cycles with zero cycle
time, thus biasing the average cycle time.

To overcome this problem, for each column j we define
an arbitrary buffer (e.g., the last buffer) and assume that the
scheduler always pauses for one time-slot after servicing it,
independently of the column state, thus virtually removing the
zero switch-over time. We then compute the steady-state cycle
time [, and subtract this time-slot back at the end to get
a more accurate model using to = ¢, — 1. We obtain the
following result.

Proposition 5: The throughput T'P of a CQ switch with
a buffer size B and an exhaustive round-robin scheduling
algorithm under a uniform Bernoulli i.i.d. traffic arrival of load
p can be modeled by

to
-0 (%

pto
N

B o) a-p

TP =

where o = ¢, — 1, and t{, is the solution of the following
fixed-point equation (which is solved numerically):

t6-N<BBZ_:1(Bk)< t,jj > (ﬁ)k(lﬁ)%lj 1
k=0

Proof: We will evaluate the crosspoint throughput T'P;;
of a single crosspoint B;; and by symmetry conclude that it is
also the throughput of the entire switch. Let X 9 be a random
variable denoting the number of packets from 1nput 1 to output
7 arrived in tg time-slots. Then

== () (5 (-4)"" e

From polling theory, T'P;; is known as the limiting ratio of the
expected number of packets absorbed in B;; by the expected
number of packets arrived at B;; during a single cycle. Thus,

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

—2&— Longest-queue-first

:| = © — Round-robin

—x— - Exhaustive round-robin |- |
0 -+ Random

Throughput (TP)

1 2 3 4 5 6 7 8 9 10
Buffer size (B)

Fig. 2. Throughput of a 32 x 32 CQ switch under uniform traffic

assuming that cycles are of average duration ¢y time-slots, the
crosspoint throughput 7'P;; is modeled by:

Sy min(k, B) - Pr (X[= k)
k- Pr (X =k)
B—Y3y (B—k)Pr (X[=k)

Plo ’
N

TP;

The expected number of packets arrived during a cycle of
duration t{, is N times the numerator, replacing to by (. As
explained above, this is a model for t6 = tp+1, when counting
an artificial additional time-slot. |

VII. SIMULATIONS

We now compare the theorems obtained in former sections
against simulation results. We show that the CQ switch can
obtain a throughput close to 100% with moderate crosspoint
buffer sizes, and in particular that LQF-based CQ switches
behave closely to OQ switches.

A. Scheduler Performance Comparison

We first want to check Theorem 1 in Section III, which
states that every work-conserving scheduling algorithm obtains
the same throughput in a CQ switch with B = 1 and uniform
Bernoulli i.i.d traffic pattern.

Fig. 2 and Fig. 3 compare the throughput of four different
work-conserving scheduling algorithms on a 32 x 32 CQ
switch with different buffer sizes, under Bernoulli traffic
arrival of rate p = 1. In Fig. 2 the incoming traffic is uniform,
while in Fig. 3 the incoming traffic is non-uniform and log-
diagonal: for each input 1 < < 31 and output j, A\;; = 27°
and Az j, = 2731 [43]. Each simulation was performed 10
times with 10° time-slots each time, yielding a maximum
standard deviation per run of 1.9 - 1073, thus the plot should
be fairly accurate.

When B = 1 and the traffic is uniform, the obtained
throughput appears indeed to be the same for all these work-
conserving scheduling algorithms, thus confirming Theorem 1.

Furthermore, when B > 1, the LQF scheduler clearly
outperforms all other schedulers, regardless of the buffer
size. The throughput of the three other scheduling algorithms
(random, round-robin, and exhaustive round-robin) appears
relatively close.

1 T yix
_ R R - T i R]
8095 :g-—«é—’:é 1
pet L B —-A— Longest-queue-first
2 o9 ;é’ : S :| = & — Round-robin -
g —x— - Exhaustive round-robin
E 085@ & - Random 4

0.8 i i i i i i i i
1 2 3 4 5 6 7 8 9 10
Buffer size (B)

Fig. 3. Throughput of a 32 x 32 CQ switch under non-uniform log-diagonal
traffic

-5

0OQ uniform
r1 - — — - LQF uniform
0 uniform model
OQ nonuniform
|| - —+— LQF nonuniform
O nonuniform model
Ll —<— 0Q LRD
—9—-CQLRD
i

5 10 15 20 25 30 35 40 45 50

Buffer size (B)

In(Overflow Probability)
>

|
{G$

!
©

1
©

|
N
o

Fig. 4. Overflow probability for an 8 x 8 LQF-based CQ switch and an OQ
switch under uniform and non-uniform Bernoulli and uniform bursty traffic.

B. Overflow Probability of LQF Scheduling

We now want to check Theorem 7 of Section IV, which
models the overflow rate of the LQF-based CQ switch using
the overflow rate of the OQ switch.

Fig. 4 displays the overflow probability on an arbitrary
column j of buffers of an 8 x 8 LQF-based CQ switch. The
simulations were run under three different types of arrival
processes. First, under uniform Bernoulli i.i.d. arrival traffic of
load p = 0.99, with a run-time of 109 time-slots. Then, under
non-uniform log-diagonal Bernoulli i.i.d. arrival traffic with a
run-time of 10° time-slots, using for each input 1 < ¢ < 7
and output j, A;; = 0.99 -27% and Ag; = 0.99 - 277 [43].
Finally, under bursty long-range-dependent (LRD) traffic with
a run-time of 10% time-slots, with load Aij = % and Hurst
parameter 0.6, using the algorithm proposed in [44].

The simulation results confirm that the overflow rates of
the LQF-based CQ switch and of the OQ switch behave in
the same way. In particular, the overflow probability formula
in Theorem 7 matches well our simulation results, both in
the uniform and non-uniform cases. Surprisingly, the overflow
rates of the LQF-based CQ switch and of the OQ switch
also behave similarly for bursty long-range-dependent traffic
arrivals.

C. Random and Exhaustive Round-Robin Scheduling

We now check the models of Proposition 4 in Section V
and Proposition 5 in Section VI on the performances of the
random and exhaustive round-robin scheduling algorithm.

Fig. 5 and Fig. 6 compare the simulation results with the
predicted results using B = 2 and B = 3, using both

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

= el

T S T simulation (B=2)
£ o8 AT — - — - approx. (8=2)]
3 7 —— simulation (B=3)
£ 096\ [—x— - approx. (B=3) |]
3 =
208 T
=

0.92 5 L n L 5 L 3 .

10 10 10 10 10

Number of ports (N)

Fig. 5. Throughput of the random scheduling algorithm.
1 = e e
T \ B i simulation (B=2)
50-98"\4‘\""""”‘ RS- —-—approx. (B=2)]
5 —— simulation (B=3)
=3 N N D T o
'g, 0.96 1\ ~ —Xx— - approx. (B=3)
3 \
g o94af T]
£ -
092\ = = s
10 10 10 10

Number of ports (N)

Fig. 6. Throughput of the exhaustive round-robin scheduling algorithm.

scheduling algorithms. They plot the throughput against the
number of ports, under uniform Bernoulli i.i.d. arrivals with
p = 0.9. The plots should be fairly accurate: each simulation
was performed 10 times using 10* time-slots each time, with
a maximum standard deviation of 3.7 - 10~3 per run.

Both models clearly reflect the non-monotonic performance
variations of the scheduling algorithms. The exhaustive round-
robin model is a bit closer to simulated values across the wide
range of port number values, while the random model appears
to be too optimistic on the throughput.

D. Real-Life Traces

We evaluate now the performance of the CQ switch in
a slightly more realistic setting, using real-life traces with
variable-size packets.

When packets have variable size, they are usually segmented
at the inputs into fixed-size cells and later reassembled again
at the destination. Thus, a variable-size packet is fully lost if
one or more of its cells are lost. Further, large packets have
more chances of having lost cells. To take this into account, we
consider the packet throughput, denoted PT P, i.e. the ratio of
the number of bits of fully-delivered packets by the number of
bits of arrived packets. Of course, the value of PT P is worse
than the value of the throughput 7'P, since losing one cell of
a large packet counts as if all cells were lost.

Fig. 7 plots the packet throughput of a 32 x 32 CQ switch as
a function of the crosspoint buffer size for different scheduling
algorithms. These include a new algorithm, Exhaustive LOF
(Longest Queue First), which upon finding a crosspoint with
the longest queue, services it until it is empty. In the simula-
tions, each input was trace-driven by a different OC-48 CAIDA
link trace [45], and the switch external rate was normalized
to the lowest needed rate so as to provide admissibility.
Therefore, the CQ switch effectively operated at an average
load of 1, well above expected loads in the Internet.

The simulation results show that the CQ switch is still able
to achieve good performance in this more realistic trace-based
setting, especially for B > 64 cells. As expected, the LQF
scheduler obtains the best results, followed by the exhaustive

—B— - Longest—-queue—first

O - Exhaustive longest-queue—first|
—~4— Round-robin
— * — Exhaustive round-robin

‘—{ T

4 16 64 256
Buffer size (B)

Packet Throughput (PTP)

o o o o o
o N_® ©
&
b

Fig. 7. Packet throughput of a 32 x 32 CQ switch under trace-based traffic.

LQF and round-robin algorithms, and then the non-exhaustive
round-robin algorithm. This simulation confirms that even
under high load, when using B = 64 cells of 64 bytes per
crosspoint, a 32Mb SRAM-based CQ switch can achieve good
performance results.

VIII. CONCLUSION

In this paper, we introduced the CQ switch and showed
that it can switch packets without permanently relying on the
current states of the input linecards, the output linecards, and
the complex centralized scheduler. We explained how it can
be readily implemented on a single chip. We finally illustrated
how the CQ switch would provide a performance comparable
to that of an ideal output-queued switch under most statistical
traffic patterns, using analysis as well as simulations based on
synthetic and real-life arrival traces.

ACKNOWLEDGMENT

We would like to thank Ran Ginosar and Paolo Giaccone
for useful discussions.

REFERENCES

[1] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
output queueing with a combined input/output-queued switch,” IEEE J.
Select. Areas Commun., vol. 17, no. 6, pp. 1030-1039, Jun. 1999.

[2] J. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” IEEE Infocom, vol. 2, pp. 556-564, 2000.

[3] F. Abel, C. Minkenberg, R. P. Luijten, M. Gusat, and I. Iliadis, “A four-
terabit packet switch supporting long round-trip times,” IEEE Micro,
vol. 23, no. 1, pp. 10-24, 2003.

[4] A. P. J. Engbersen, “Prizma switch technology,” IBM Journal of Re-
search and Development, vol. 47, no. 2-3, pp. 195-210, 2003.

[5] M. Nabeshima, “Performance evaluation of a combined input- and
crosspoint-queued switch,” IEICE Trans. Comm., vol. 83, no. 3, pp.
737-741, 2000.

[6] R. Rojas-Cessa, E. Oki, and H. J. Chao, “CIXOB-k: combined input-
crosspoint-output buffered packet switch,” IEEE Globecom, vol. 4, pp.
2654-2660, Nov. 2001.

[7]1 R.Magill, C. Rohrs, and R. Stevenson, “Output-queued switch emulation
by fabrics with limited memory,” IEEE J. Select. Areas Commun.,
vol. 21, no. 4, pp. 606-615, May 2003.

[8] S.-T. Chuang, S. Iyer, and N. McKeown, “Practical algorithms for
performance guarantees in buffered crossbars,” IEEE Infocom, vol. 2,
pp. 981-991, Mar. 2005.

[9] M. Katevenis, G. Passas, D. Simos, 1. Papaefstathiou, and N. Chrysos,
“Variable packet size buffered crossbar (CICQ) switches,” IEEE ICC,
vol. 2, pp. 1090-1096, Jun. 2004.

[10] M. Lin and N. McKeown, “The throughput of a buffered crossbar
switch,” IEEE Commun. Lett., vol. 9, no. 5, pp. 465-467, May 2005.
[11] D. Pan and Y. Yang, “Localized asynchronous packet scheduling for
buffered crossbar switches,” ACM/IEEE ANCS, pp. 153-162, 2006.
[12] J. Turner, “Strong performance guarantees for asynchronous crossbar
schedulers,” IEEE Infocom, 2006.
P. Giaccone, E. Leonardi, and D. Shah, “Throughput region of finite-
buffered networks,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 2,
pp- 251-263, Feb. 2007.

[13]

TECHNICAL REPORT TR08-04, COMNET, TECHNION, ISRAEL

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

(31]

(32]

(33]

(34]

(351

[36]

[37]
[38]
(391
[40]
[41]
[42]
[43]
[44]

[45]

S. He, S. Sun, H.-T. Guan, Q. Zheng, Y. Zhao, and W. Gao, “On guar-
anteed smooth switching for buffered crossbar switches,” IEEE/ACM
Trans. Networking, vol. 16, no. 3, pp. 718-731, 2008.

G. F. Georgakopoulos, “Buffered cross-bar switches, revisited: Design
steps, proofs and simulations towards optimal rate and minimum buffer
memory,” IEEE/ACM Trans. Networking, vol. 16, no. 16, pp. 1340-1351,
Dec. 2008.

P. Giaccone and E. Leonardi, “Asymptotic performance limits of
switches with buffered crossbars,” IEEE Trans. Inform. Theory, vol. 54,
no. 2, pp. 595-607, Feb. 2008.

S. Iyer, R. Zhang, and N. McKeown, “Routers with a single stage of
buffering,” ACM SIGCOMM, vol. 32, no. 4, pp. 251-264, 2002.

I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard,
and N. McKeown, “Scaling internet routers using optics,” ACM SIG-
COMM, vol. 33, no. 4, pp. 189-200, 2003.

S. Iyer and N. McKeown, “Analysis of the parallel packet switch
architecture,” IEEE/ACM Trans. Networking, vol. 11, no. 2, pp. 314—
324, 2003.

F. Abel, C. Minkenberg, I. Iliadis, A. P. J. Engbersen, M. Gusat,
F. Gramsamer, and R. P. Luijten, “Design issues in next-generation
merchant switch fabrics,” IEEE/ACM Trans. Networking, vol. 15, no. 6,
pp. 1603-1615, 2007.

C. Minkenberg, R. P. Luijten, F. Abel, W. Denzel, and M. Gusat,
“Current issues in packet switch design,” SIGCOMM Comput. Commun.
Rev., vol. 33, no. 1, pp. 119-124, 2003.

P. Goli and V. Kumar, “Performance of a crosspoint buffered ATM
switch fabric,” IEEE Infocom, pp. 426-435, 1992.

H. Tomonaga, N. Matsuoka, Y. Kato, and Y. Watanabe, “High-speed
switching module for a large capacity ATM switching system,” IEEE
Globecom, vol. 1, pp. 123-127, Dec. 1992.

S. Nojima, E. Tsutsui, H. Fukuda, and M. Hashimoto, “Integrated
services packet network using bus matrix switch,” IEEE J. Select. Areas
Commun., vol. 5, no. 8, pp. 1284-1292, Oct. 1987.

E. Del Re and R. Fantacci, “Performance evaluation of input and output
queueing techniques in atm switching systems,” IEEE Trans. Commun.,
vol. 41, no. 10, pp. 1565-1575, Oct. 1993.

International Technology Roadmap for Semiconductors (ITRS), “Exec-
utive summary,” 2007.

IEEE P802.3ae 10Gb/s Ethernet Task Force, “XAUI standard,” 2001.
H. Attiya, D. Hay, and I. Keslassy, “Packet-mode emulation of output-
queued switches,” ACM SPAA, pp. 138-147, 2006.

M. Ajmone Marsan, A. Bianco, P. Giaccone, E. Leonardi, and
F. Neri, “Packet-mode scheduling in input-queued cell-based switches,”
IEEE/ACM Trans. Networking, vol. 10, no. 5, pp. 666-678, Oct. 2002.
Y. Ganjali, A. Keshavarzian, and D. Shah, “Input queued switches: cell
switching vs. packet switching,” IEEE Infocom, vol. 3, pp. 1651-1658,
Mar. 2003.

N. McKeown, “Sizing router buffers,” Presentation, Stanford, 2006.

G. Shrimali, I. Keslassy, and N. McKeown, “Designing packet buffers
with statistical guarantees,” IEEE Hot Interconnects, 2004.

J. Garcia-Vidal, M. March, L. Cerda, J. Corbal, and M. Valero, “A
DRAM/SRAM memory scheme for fast packet buffers,” IEEE Trans.
Comput., May 2006.

S. Iyer, R. R. Kompella, and N. McKeown, “Designing packet buffers
for router linecards,” IEEE/ACM Trans. Networking, vol. 16, no. 3, pp.
705-717, 2008.

G. Appenzeller, 1. Keslassy, and N. McKeown, “Sizing router buffers,”
ACM SIGCOMM, vol. 34, no. 4, pp. 281-292, 2004.

G. Raina and D. Wischik, “Buffer sizes for large multiplexers: TCP
queueing theory and instability analysis,” Next Generation Internet
Networks, pp. 173-180, Apr. 2005.

M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Routers with very small buffers,” IEEE Infocom, pp. 1-11, Apr. 2006.
M. Shifrin and I. Keslassy, “Modeling TCP in small-buffer networks,”
Networking, pp. 667-678, 2008.

S. K. Bose, An Introduction to Queueing Systems. Springer, 2002.
[Online]. Available: http://home.iitk.ac.in/~skb/qbook/MG1-N.PDF
Personal Communication.

A. Ganesh, N. O’Connell, and D. Wischik, Big Queues. Springer, 2004.
H. Takagi, Analysis of polling systems. MIT Press, 1986.

D. Shah, P. Giaccone, and B. Prabhakar, “An efficient randomized
algorithm for input-queued switch scheduling,” IEEE Hot Interconnects,
Aug. 2001.

R. G. Clegg and M. Dodson, “Markov chain-based method for generat-
ing long-range dependence,” Phys. Rev. E, vol. 72, no. 2, Aug. 2005.
“Cooperative association for internet data analysis (CAIDA).” [Online].
Available: http://www.caida.org/

