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Abstract— The load-balanced switch architecture is
promising way to scale router capacity. It requires no cen
tralized scheduler, requires no memory operating faste
than the line-rate, and can be built using a fixed, optics
mesh. In a recent paper we explained how to prevent pack
mis-sequencing and provide 100% throughput for all traf-
fic patterns, and described the design of a 100Th/s routt @
using technology available within three years. But then
is one major problem with the load-balanced switch tha
makes the basic mesh architecture impractical: Because tl
optical mesh must be uniform, the switch does not wor
when one or more linecards is missing or has failed. Ir
stead we can use a passive optical switch architecture wi
MEMS switches that are reconfigured only when linecard:
are added and deleted, allowing the router to function whe
any subset of linecards is present and working. In this pape
we derive an expression for the number of MEMS switches Fig. 1. Load-balanced router architecture
that are needed, and describe an algorithm to configure
them. We prove that the algorithm will always find a cor-
rect configuration in polynomial time, and show examples with throughput guarantees that no commercial router can
of its running time. match today. The key to the scalability is the use of the
load-balanced switcHirst described by C-S. Chamgal.
in [2]. In [1] we extended the basic architecture so that

. . . ) i it has provably100% throughput for any traffic pattern,
Our goal is to identify router architectures with pre- P y100% ghp y p

dictable th hout and labl i At th and doesn't mis-sequence packets. It is scalable, has no
ctable throughput and scalable capacily. € Sa&ntral scheduler, is amenable to optics, and can simplify

time, we would like to identify architectures in which 9Pihe switch fabric by replacing a frequently scheduled and

tical technology (for example optical switches and Wav?éconfigured switch with a single, fixed, passive mesh of
length division multiplexing) can be used inside the rOUt%DM channels ’ ’

to increase capacity by reducing power consumption. load-bal q based ical hi
In a previous paper [1] we explained how to build a # l0ad-balanced router based on an optical mesh is

100Tb/s Internet router with a single-rack switch fap2noWn in Figure 1. Figure 1(a) shows the basic meQSh ar-
ric built from essentially zero-power passive optics, b&pltecture W!thN - 4 Imecgrds mterc_onnected BV
without sacrificing throughput guarantees. Compared Itaks. Ea_ch linecard in the first stage is connected to each
routers available today, this is approximately 40 timé@ecard in the center stage by a channel at dafev,

more switching capacity than can be put in a single racW_here_R is the Ilnerate a_n(zN is the number c,’f linecards.
Likewise, each linecard in the center stage is connected to

This work was funded in part by the DARPA/MARCO Center folagch linecard in the final stage by a channel a“%yty_

Circuits, Systems and Software, by the DARPA/MARCO Interconne . . . .
Focus Center, Cisco Systems, Texas Instruments, Stanford Network%%sentla‘”y’ the architecture consists of a single stage of

Research Center, Stanford Photonics Research Center, and a Wal@rﬁgers sandwiched by two identical stages of switching.
Stanford Graduate Fellowship. The buffer at each center stage linecard input is partitioned
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into N separate FIFO queues, one per output (hence teereplaced, or are removed as the topology changes. In
call them virtual output queues, VOQSs). general, the router must operate when linecards are con-
The operation of the two meshes is quite different fromected to arbitrary ports.
a normal single-stage packet switch. Instead of pick- The switch fabric must therefore be able to scatter traf-
ing a switch configuration based on the occupancy of tfie uniformly over the linecards that are present. This
qgueues, packets arriving at each input are spread umieans the switch needs to be reconfigured as linecards
formly over the center stage linecards. A packet aare added and removed, and we’'ll no longer be able to use
riving at time ¢ to input linecard: is sent to linecard a uniform fully-interconnected mesh. In [1] we described
[(i+t) modN| +1; i.e. the mesh performs a cyclic shifta hybrid electro-optical architecture that solves this prob-
and each input is connected to each output exaktth lem, and will operate with any subset of linecards; it is
of the time, regardless of the arriving traffic. The seshown in Figure 2. We encourage, and assume, that the
ond stage mesh is identical; it services each VOQ at fixeghder is familiar with [1]. Previously, we haven't ex-
rate R/N, regardless of its occupancy. Although they anglained how to configure the switch, or even proved that it
identical, it helps to think of the two stages as perforntan spread traffic uniformly over all linecards. In this pa-
ing different functions. The first stage is a load-balanceer we describe an algorithm to do this, and prove that it
that spreads traffic over all the VOQs. The second stagél always find a valid configuration, so long as we have
serves each VOQ at a fixed rate. The packet is put into thgufficient number of MEMS switches.
VOQ at the center stage linecard according to its eventual
output. Sometime later, the VOQ will be served by thg oyerview of problem

second stage. The packet will then be transferred acros% . . .

. . L he architecture is arranged@groups ofL linecards.
the second switch to its output, from where it will depart . .
the system In the center,M statically configuredz x G MEMS

Although Figure 1(a) appears to shaW linecards switches interconnect th@& groups. The MEMS switches

(N for each stage), a real implementation would have are re(zjconélgurr]ed only \;vrll.en a gnecard 'j‘ addeifl tor re-
linecards, and each linecard would contain three logi Ved. tach group ol linecards spreads packels over

parts. This means that the two meshes can be repla MEMS switches using ah = M electrpnlc cross-
by a single mesh running twice as fast, as shown in Fige" Each output of the electronic crossbar is connected to

ure 1(b). Every packet traverses the switch fabric twic different MEMS switch over a dedicated fiber at a fixed

Once from the input linecard to a VOQ in the center Staﬁavelength (the lasers are not tunable).. Packets from the
linecard, then a second time from the VOQ to the outp EMSbSW':];;esfr? sr;)rea_d across theinecards in a
linecard. Finally, we can replace the mesh\ot fibers by group by anil > £ €leclronic crossbar. oo .
2N fibers and an arrayed-waveguide router (AWGR [3] When all linecards are pr-esent the-operatlon IS quite
as shown in Figure 1(c). In this case, each input ”neca%{jralghtfprward. For each linecard .Wlthm a group, the
uses WDM to multiplex a separate channel at g N electronic crossbar sends consecutive packets to one
for each linecard onto a single fiber. The AWGR is glser. It then sendk consecutive packets to the next laser,

passive fixed device that permutes the channels so tﬂﬁg So on, cyc_llng through at[F_Iasers In turn. The first
each linecard receives a channel at &8N from each MEMS switch is statically configured to connect grayip
linecard to groupg; the second MEMS switch connects grogp

to groupg + 1, and so on. This means that if a packet is
sent from groupy by laserk, it will be delivered to group

Il PROBLEM STATEMENT [((9+k—2) modG]+1. The electronic crossbar at the out-
A. Background put received, consecutive packets from each of the input

Unfortunately, the load-balanced switch based on a pggeups. It spreads these packets so that one packet from

sive mesh requires all linecards to be present and wosach group goes to each of thdinecards. Hence, there
ing. The load-balanced switch works by spreading padk-an equal rate path between every pair of linecards.
ets over all linecards, and therefore needs to be aware ofhings get more complicated when there are fewer
which linecards are present and which are not. If sonfigecards present. We will illustrate the problem with a
linecards are missing, traffic must be spread equally owsimple switch with just three linecards. Figure 3(a) shows

the remaining linecards. . _ _ _
Strictly speaking, this only works wheh < G since the numbers

,ThIS IS a very r.eal problem. Routers are pften bOLJgthMEMS switches needed between groups is equéﬂ%/(LGﬂ =
with a subset of linecards present to start with, and mofg; 7. if, say,G = 2 andL = 3, we need more MEMS switches:

are added as the network grows. Linecards fail and negthe operation is similar.
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Fig. 2. Hybrid optical and electrical switch fabric.

three linecards connected as a full mesh; each linecéireecard sends a packet, the packet arrives at the output at
sends at rat@ R/3 to every other linecard. Now partitionthe same time as another packet; or, if the packet collides
the linecards into two groupg, and B, with two linecards with another packet in a MEMS switch. The algorithm

in group A and one linecard in group, as shown in Fig- that determines the frame needs to be aware of these con-
ure 3(b). We will determine how the electronic crossbaflcts.

and MEMS switches are configured so that each pair ofin the remainder of this paper, we first formally de-
linecards is connected at ra2é?/3. Group A needs to scribe the problem in Section IIl. In Section IV, we de-
send at an aggregate rate8dt/3 to groupA, and4R/3 termine the minimum number of MEMS switches needed.
to groupB; group B needs to send at ratg?/3 to group Finally in Sections V-VII, we describe an algorithm that

A and2R/3 to groupB. If we assume that each crossbawill correctly construct the frame.

output can send at maximum r&g&, we require two out-
puts and two MEMS switches to connect gradipo group

A. We therefore need a total of three MEMS switches, two

arranged in the straight configuration and one arranged inye will assume throughout that there agegroups;

the cross configuration. The correct configurations of tReoup i containsL; linecards, and the total number of
MEMS switches are shown in Figure 3(c). linecards is:

To spread packets uniformly over the linecards, we G
need to pick the static configuration for each MEMS N=3% L.
switch, and the sequence of permutations followed by the '
electronic crossbars. We will do this by finding a fixed¥e will assume thal;, Lo, ..., L are fixed for a given
length sequence of permutations for edch M crossbar, linecard arrangement.
then instruct each crossbar to cycle repeatedly through thiuring every frame ofN time-slots each sending
sequence. Following the convention in circuit switchindinecard needs to be connected exactly once to each of the
we will call this sequence frame N receiving linecards. Similarly, each receiving linecard

Let us consider an example of how we might cormeeds to be connected exactly once to each aiisend-
struct a frame. Consider the example in Figure 3 againg linecards. Furthermore, in every time-slot, each send-
Since each linecard needs to spread its data uniformly ougg linecard cannot connect to more than one receiving
three output linecards, the frame will have three slots. limecard, and vice-versa.
the frame, each linecard will send one packet to each ofPut mathematically, if sending linecaids connected
the three output linecards. A conflict occurs if, when ® receiving linecard’;; in time-slotj, then:

Il1. LINECARD SCHEDULE PROBLEM



can only communicate at a rate up2B through any sin-
gle MEMS switch. Therefore, the minimum number of
MEMS switches between grou@and groupj is:

Linecard 3 L 4 \ 4 Linecard 3
= = LooR-1, 17 [LiL,
N 2R N '
- 8RI3 - . . .
[unecas | gy [ | We will call this theMEMS constraint
Linecard 2 |— —{ Linecara2 Matrix T" above doesn’'t meet the MEMS constraint be-
: 3 3 : cause the maximum number of connections allowed be-
[reeds e 2R3 N EE) tween group 1 and group 1 at any time—sloﬁ;ﬂ = 2.
o Similarly the second and third groups also don’t meet the
constraint.
Static
MEMS
—— 332 —— IV. NUMBER OF MEMS SWITCHES NEEDED FOR A
3 o2 LINECARD SCHEDULE
lml_ Crossbar | 4R/3 Crossbar __'m‘ .
The following theorem shows how many MEMS
Lrecaas ||, [ s [ Linecards switches are needed in order to build a linecard schedule
Crossbar 22 T — Crosshar that satisfies the MEMS constraint.
Theorem 1:We need at least
©
. o . . . S IL-Lj
Fig. 3. Example of a hybrid switch architecture with three linecards o= Z — | <L+G-1
in two groups. (a) A full linecard mesh logical view. (b) Grod#pis j=1 N

not fully populated, and so the rates between groups are different. (c) . . ) .
The configuration of MEMS switches to achieve the required rates. Static MEMS switches in order to build a linecard sched-

ule that satisfies the MEMS constraint, whefe =
max;(L;).

Proof: A MEMS switch can connect a sending
group to at most one receiving group, and the minimum
number of MEMS switches needed to connect sending
group: to all receiving groups is:

Tijr # Ty forall 5" # j
Ty; # Ty forall &' # i
Ti; €{1,..,N} foralli,j

We'll call T thelinecard scheduleT is a Latin square,

G Y .
i.e. the numbers frorhto NV appears exactly once in every Z [L’Lﬂ .
row and every column. We will refer to a time-slot as a j=1 N
column.

In particular, assume that the largest group las=
max;(L;) linecards. Then the total number of MEMS
switches needed by the largest group to connect to all re-
ceiving groups is at least:

For instance, let's assume that = 3, L, = 2, and
Ly = 2 (i.e., G = 3, N = 7). Then the following is a
linecard schedule:

1 23 45 67 G .
2 3456 71 L-L; L-Lj
3456 7 1 2 a=Y |2 <> I41)=L+G.
; N ; N
T=|456 7123 j=1 j=1
2 S I ; § i g Becausey, L andG are integerspe < L + G — 1.
7 1 92 3 4 5 6 Hence we need at mokt-G —1 static MEMS switches

. . to create a uniform mesh with any linecard arrangement.
The last constraint arises from the use of MEMS -

switches in the hybrid optical_-electricql switch fabric. Let |, o example WithL, = 3, L, = 2, and Lz = 2,
L; represent the number of linecards in graughe rate
needed between grod@nd groupyj is equal to o = P%ﬂ + P%ﬂ + F’%ﬂ -4

(Li-2R) - (Lj/N), wherel <i,j < G. It is clear thate < L+ G — 1 = 5. Using a different
This is because the incoming traffic is spread uniformlinecard configuration where = 3 andG = 3, it is also
over all N receiving linecards, and groypeceives a por- possible to reach the upper bound, for instance With=
tion (L;/N) of this traffic. As assumed above, two group8, L, = 3, andL3z = 2.
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V. VALID SCHEDULES schedule which incorporates the constraints on linecards.
A. Linecard Schedule We will define and provide examples for these schedules
below.

In this section, we will find an algorithm that works
with exactlyae MEMS switches.

We will introduce different types of schedules to help. Linecard-to-Group Schedule
clarify the presentation of the linecard schedule solution. Definition 3: A linecard-to-group(L-G) scheduld is
The three new schedules are (1) linecard-to-linecard, @)matrix with N rows corresponding to th& sending
linecard-to-group, and (3) group-to-group schedules. Agecards,N columns corresponding to th¥ time-slots
described in the definitions below, the first part of thef the frame, and one letter per row-column intersection
schedule name represents whether the schedule deiefresponding to the receiving group.
mines the specific sending linecards or only the sendingDefinition 4: An L-G scheduld/ is said to bevalid iff
groups, and the second part of the name specifies whetinr;*" |etter appears exactly; times in each row and
the schedule determines the specific receiving linecaggch column, and at mo#ﬁ%} times in the linecards

or only the receiving groups. For instance, a linecard-tgz groupi in any column ofU (MEMS constraint).
group schedule will determine which linecard will send t0 a1 is an example of a valid L-G schedule.

which receiving group in each column.

Definition 1: A linecard-to-linecard(L-L) scheduleT’
is a matrix with N rows corresponding to thd sending
linecards,N columns corresponding to thE time-slots
of the frame, and one receiving linecard index per row-
column intersection.

Note that a linecard-to-linecard schedule is the same as

a linecard schedule. ice th N is th R h
Definition 2: An L-L scheduleT is said to bevalid iff Notice that matrix is the same as matrik except that

areceiving linecard appears exactly once in every row am? receiving linecard mdpgs are replaced with the letters
Li-L; L corresponding to the receiving linecard group.
column of7", and at mos| —~ | receiving linecards from

groupj are connected to sending linecards from groeup
in any column ofl’ (MEMS constraint). C. Group-to-Group Schedule

In other words;I" is a valid L-L schedule if itis a Latin ~ Definition 5: A group-to-group(G-G) scheduleV is
square satisfying the MEMS constraints. Here is an ex-matrix with G rows corresponding to th& sending

-

I
QAxQ W
Qe Qw
Qe Q e
= Qe e Q
oA
= e QAW
= e Qe QA

ample of a L-L schedule which is valid. linecard groupsN columns corresponding to thé time-
L4926 3 5 7 slots of the frame, and; letters per row-column intersec-
9 6 15 7 3 4 tion in rgyvi. ' . -
4 3 7 1 5 6 2 Definition 6: A G-G scheduld/ is said to bevalid iff

T=|5 13 4 2 7 6 the i’ letter appears exactly; - L; times in each row

T 5 436 21 j (corresponding to sending groyp, L, times in each
3 2 6 71 4 5 Li-Li7 . .
6 7 5 92 4 1 3 column, and at mos(t ~ | times in any row-column in-

. , , .. tersection in rowi (MEMS constraint).
Notice that the MEMS constraint used in Definition 2 Here is an example of a valid G-G schedule.

applies to groups, not linecards. For instance, the example
matrix 7" is not allowed to have more than two receiving ( AAB ABC AAC ABC ABC ABC ABC )

linecards from the first group in the first threerowsinany = | _BC AB AB AB AC AC AC
column. Therefore, in order to build L-L schedules, we Ac - AC BC - AC ABAB AB

cannot only consider the constraints on linecards, but alsq\lotice that one can get matrix V by grouping together

need to take into account the constraints on groups. Ttﬂ% : - -
) ) rows corresponding to the same group in matrix U.
MEMS constraint makes the linecard schedule problem P g group

non-trivial.

We will show that it is possible to build a validD- Schedule Equivalence Theorem
group-to-groupschedule that only considers constraints Given a valid L-L schedule, we can easily deduce a
on groups, and then successively build a véiieécard- valid L-G schedule, and then a valid G-G schedule. How-
to-groupschedule and finally a valiihecard-to-linecard ever, it is not obvious how to create a valid L-L schedule




STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 6

from a valid G-G schedule. The following theorem, which The proof in the appendix shows th&t exists (it

is proved in the appendix, shows that we can. uses graph theory for proof of existence, and the
Theorem 2:Consider the following three schedules: Ford-Fulkerson max-flow algorithm for building it).
(i) A valid linecard-to-linecard (L-L) schedulg 4) Use the scheduls® = P! + R! for this time-slot.
(ii) A valid linecard-to-group (L-G) schedulg UpdateM'~! = Mt — S,

(iii) A valid group-to-group (G-G) schedul&
Given one schedule we can create the other two: (B: Example

L)< (L-G)<(G-G). ) . . "
In the next section, we will show how to construct a. We build the matrixV” given the scheduless®, pro-

) e )
valid G-G schedule, hence proving that it is always posé’i'—ded in Table | More specifically;; represents the

5 . +th .
ble to obtain a linecard schedule that satisfies the MEM&MPer of occurrences of thyé" letter in the:™* row in
constraint. columnN — ¢t + 1 of matrix V. For instance, the schedule

2 1 0
VI. CONSTRUCTING AVALID G-G SCHEDULE ST=101 1
A. Algorithm for Constructing a Valid G-G Schedule 101

We will now construct an algorithm that reCUFSiVGI)he”:)S us create the first column @fhaving twoA’s and
builds a valid group schedule time-slot after time'SIOt, foneB in the first row, one3 and ong”' in the second row,
the N time-slots of the frame. We will then show in th%nd oneA and oneC in the last row. S® will determine
appendix that the algorithm finds a valid solution, and the{e second columns® will determine the third column,

it has a polynomial complexity. and so on. The resulting matrix is
At the start:

Let ¢t be the number of time-slots left to schedule after (AAB ABC AAC ABC ABC ABC ABC)

each iteration. At the start,= N, since all the time-slots V = | _BC___AB AB AB AC AC AC
are unscheduled. Also, |8 = M* = MY be the initial Ac o Ac BC A0 AB AR AB
matrix of all the elements that need to be scheduled. Its
rows represent the sending groups, its columns the receiv- VII. VALID L-L SCHEDULE
ing groups (letters “A”, “B”, ...). At the start, for all, j, A. From a Valid G-G Schedule to a Valid L-G Schedule
M;; = L; - Lj,i.e. there ard; - L; connections to sched-
ule from sending groupto receiving group; during the
whole frame.

Iteratively:

Fort = N,N —1,...,1, proceed as follows.

We will now construct an algorithm that successively
builds a valid L-G schedule given a valid G-G schedule,
and then a valid L-L schedule given a valid L-G schedule.
This algorithm will be used in the appendix to prove The-
N . orem 2. In this section, we will transform the valid G-G
1) For eachi, j, do the decomposition af/j; in base gchedule described in Section V into a valid L-G schedule.

tt M = P, -t+Ql (ie. P' = HMtJ, For eachl < j < @, consider row; in V. In our
Qt = M* — Pt .¢). In this iteration, we will start by e€xample, the first row is:

schedulingP?, and then consider the remaindgf

and schedule a part of it such that all the constraints( AAB  ABC AAC ABC ABC ABC ABC )

are satisfied. . .
2) Define the vectora! andb! such that We want to subdivide each ropinto L; sub-rows, cor-

responding to the subdivision of each sending grpinpo

D DAoL tor all i L; sending linecards, thus forming a valid L-G schedule.
“T et orafl First, each letter has; - L; occurrences in any given
bz. — % for all j row of V. Arbitrarily divide them intoL; subscripted let-
ters (“sub-letters”) ofL; elements. In our example, we
a' andb’ are integer vectors (cf proof). transform the letters df into IV arbitrarily assigned sub-
3) Find a 0-1 matrixk! < Q! such that: letters (A1, Ao, A3, B, By, C1,C5). For instance, since
A appeard times in the first row, we replace th€s ar-
> 1 Rl =al foralli bitrarily with 3 A;’s, 3 A2’s and 343’s:
Ez’szl Rﬁ/j = b; for a”j (A1A1B1; A1B1Ch; A2AsCh; AaBiChy A3zBaCa; AzBaCo;

R;?j € {0,1} forall i, j A3B2C5)
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TABLE |
EXAMPLE OF APPLICATION OF THE ALGORITHM
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Finally,fort:3,2,1:Mt:<t 0 t>=t<1 0 1>,Rt:<0 0 O)andSt:<1 0 1).
t t o0 1 10 000 1 10
In row j of matrix V', each of theV sub-letters haé; could be:
occurrences, and each of thecolumns had.; elements.
Let’s form a new matrix that has sub-letters as inputs ané | coll col:2 col3 cold col5 col§ col:T

: : Al 1 0 0 0 0 0 0
columns as outputs. In this new matrix, all columns anq .

0 0 1 0 0 0 0
all rows havel; elements. In our example, the new matrix| 45 || o 0 0 0 1 0 0
for the first row ofV is : Bi| 0 10 0 0o 0 0 |’
Ba|| 0 0 0 0 0 1 0
Ci || 0 0 0 1 0 0 0
H col.1 col.2 col.3 col.d col.5 col.6 col.7 Cs 0 0 0 0 0 0 1
Al 2 1 0 0 0 0 0
Az || 0 0 2 1 0 0 0 yielding the first row of:
As || 0 0 0 0 1 1 1
By 1 1 0 1 0 0 0 Ai B1 Ay Ci As By (s
B 0 0 0 0 1 1 1 A C, Ay B, Cy As Bs
Cy 0 1 1 1 0 0 0 Bl A Ci Ay By (s A
Cy || 0 0 0 0 1 1 1

We finally replace each sub-letter by the corresponding

We can now apply the Birkhoff-von Neumann deconiétter, and get the valid L-G schedule. Upon examination

position theorem to this matrix, by decomposing it into Qf the algorithm, it is clear that we only permute letters

sum of L; permutations [4], 5% We obtainZ; permuta- within the same column of the same sending group, thus

tions. By reading column after column, each of these pé(r'-e’ldmg a valid L-G schedule. In our example, the result-

mutations gives a sequence of sub-letters that correspoW@sL'G schedule is:
to a row of the desired L-G schedule. Therefore, ihe

permutations yield thé ; rows of the L-G schedule corre-
sponding to group. In our example, the first permutation

-

I
QQ e
Qe QW
W QW eQ e
= Qe e Q
oA
= e QA e W
=W Qe QA

2Because all elements are integers we could use graph-coloring in-
stead [6][7][8][9].
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B. From a Valid L-G Schedule to a Valid L-L Schedule 50
: . ) N
In the previous section, we constructed a valid L 2 40 1
schedule given a valid G-G schedule. In this section, %
will transform the valid L-G schedule into a valid L- % 30
schedule. =
We apply the Birkhoff-von Neumann theorem ( 'z, 20 -
graph-coloring) for each letter. First, we replace eAc g
with a “1”, and every other letter with a “0”. Foroure; S 107
ample, we get: o 0
I T T
A 0 A 0 A 0 O 0 10 20 30 40
A 0 A 0 0 A O
0O A 0 A 0 0 4 Number of Groups
0 A A0 40 0 Fig. 4. Running time of our implementation of the algorithm. Times
0 0 0 A0 A4 A are averaged over 100 runs for each valué&/of
A A 0 0 A 0 0
00 0 A 0 A A
L 01010 0 1 42 6 3 5 7
2 6 1 5 7 3 4
101 00 10
01010 01 4 3 71 5 6 2
T=|5 13 4 2 7 6
— |01 1 01 00
00010 1 1 75 4 3 6 2 1
3 2 6 7 1 4 5
110 0 1 0 0 6 7 5 9 4 1 3
000 1 0 1 1
We then decompose the above matrix into the sum of VIIl. PRACTICAL CONSIDERATIONS

L; different permutations, such that tié¢ permutation  To estimate how long the algorithm takes to run in
will indicate at which times linecartlis scheduled. Since practice, a program was implemented using the ‘C’ pro-
there are exactly.; ones (corresponding to thie; A's) gramming language (source code and detailed description
in each row and column, this is possible by Birkhoff-voavailable at [10]). Given an arrangement of linecards and
Neumann. In our example, we can decompose the ab@veups, the program finds a valid G-G schedule to config-
matrix into the sum of three permutations: ure the MEMS switches and electronic crossbars.

We ran the program on a Pentium Il operating at 1GHz,

(1) 8 (1) 8 8 8 8 (1] 8 (1) 8 8 8 8 with different values of7, N and L, up to maximum val-
000100 0 000000 1 uesN = 640, L = 16 _andG :_40. In each sucgesswe _
0100000 |+|l0000T100 run, the placement of linecards in the rack was picked uni-
000 O0O0O0 1 00000 10 formly at random. The running times, averaged over 100
0000100 0100000 runs per value o7, are shown in Figure 4.
0000010 00010 0 0 : : -
Our implementation runs too slowly to pick a new con-
figuration in real-time when a linecard is added, removed
0000100 or fails. The typical req_uire_ment would be that the router
00 00 O 1 0 be up and running again with 50ms of a change, whereas
01 00 000 with N = 640 the algorithm took up to 50 seconds to
+[ 0 8 1 ? 8 8 0 complete. Although our implementation is not ideally op-
(1) 0 8 0 0 8 timized, itis unlikely to run fast enough to make real-time
0000 0 0 1 decisions.

In practice, we could run the algorithm in advance and

Applying this method to each letter, we then createstore the results. When a certain group of linecards is

valid L-L schedule, with exactly one occurrence of eagtresent, we can pre-calculate all the configurations that
receiving linecard index in each row and column. In outiffer by one or two linecards, or one or two groups (e.g.
example, we get the following valid L-L schedule, hencié a whole rack is powered down, or fails). Alternatively,
concluding the construction process: but less likely, the algorithm could be implemented to
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run very quickly in a custom ASIC. The algorithm lend§10] Switch configuration algorithm, available at
itself to fine-level parallelism, especially in the parallel http://yuba.stanford.edu/or/SwitchConfig.c

: 3 " [11] A. Schrijver, “A course in combinatorial optimization,” available
Birkhofi-von Neumann decompositions, and would run é at http://www.cwi.nl/"lex/files/dict.ps, Feb. 2003.

lot faster than in software. [12] L.R. Ford and D.R. Fulkersorflows in Networks Princeton
University Press, 1962.

IX. CONCLUSIONS
APPENDIX |

In this paper, we showed how it is possible to reconfig-
PROOF FORTHEOREM 2

ure the load-balanced switch when one or more linecards
is missing or has failed. We found that using the archi- First, as shown in Section V, it is easy to successively
tecture described in [1], we need at mdstt G — 1 build a valid L-G schedule from a valid L-L schedule and
static MEMS switches in order to build a linecard schedt valid G-G schedule from a valid L-G schedule.

ule that satisfies the MEMS constraint, whegeis the ~ On the other hand, Section VII shows the algorithm
number of groups and. is the maximum number of which successively constructs a valid L-G schedule from
linecards per group. We then described a polynomial-tirgevalid G-G schedule and a valid L-L schedule from a
algorithm to configure the packet transmissions and tM@lid L-G schedule. This is true as long as we can decom-
MEMS switches, and proved that it is not only necessaRPse the matrix into a sum of permutations (for example,
but also sufficient to use static MEMS. This was done Using a Birkhoff-von Neumann decomposition or graph-
based on edge coloring algorithms in a regular biparti&!oring), which we can always do when the sums on each
graph and the Ford-Fulkerson max-flow algorithm. ~ row and each column are equal [4], [5].

APPENDIX I

] . PROOFS FOR THECONSTRUCTION OF THEVALID G-G
The authors would like to thank Professors Balaji Prah- SCHEDULE

bakar and Yinyu Ye for useful discussions; and Mingjie .
. . . . Proof: Assume that for a givety
Lin for implementing the algorithm used to generate re-
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1€51,J€S2 1€81 j€saC
¢
Y. Q=t) ai—t Y b
1€51,J€52 1€81 j€saC

In addition, since — 1 > Q!

D, tgrs0= D Qi

1€51,J€82 1€51,J€52
therefore
> Wgumozt) ai—t Y, by
1€S81,J €S2 €81 jGSQC

Since|E(s1, s2)| = ZiESlJGSQ 6@53'20’

‘E(Sl,SQ)‘ > Zai— Z bjz ZCL@-&- ij—()'.

1€81 jGSQC 1€81 jGSQ

10

Thus,

) - [ v

and

1 1 L;-L;
t t t t ? J
s o] o < [ 1< 5],
Note that in both cases
L;-L;
t ? J
Fifth, let's complete the recursion hypothesis and show
that:
() S5 Mt = Li(t — 1) for all i
(i) Sy My =Ly(t —1) for all j

(i) 0 < Mt < [E5F| k- 1) foralli,j

ThUSRtL exists. Note that it is pOSSibIe to construct it |N/Ve’|| use the assumptions oWf stated at the start of the
polynomial time using Ford-Fulkerson (see next sectiongroof, and the definitiod/!~! = M* — St.

Fourth, let's show that the resulting schedle will
satisfy the MEMS constraint, i.e. for allj,

Li- L
to< |2 T
B [N ]

1] —
We know that
1
t t t t t
Sij =P, +R;; = LMUJ + Rijs
t t t 1 t
Ri; < Qi =M —t ;Mz'j ;

ijg[ ’N j-‘t.

and

Let’s first prove (i) by showing that

G
> S =L
=1

(the proof for (ii) is similar). By definition,

G G
¢ ¢ t
Z Sijr = Z(Pij’ + Ryj),
J'=1 j'=1
and
G G
j'=1 j'=1
thus

G G

e}
t t t t
Distinguish two cases regarding this last inequality. If this Z Sij = Z (P + Qi) [t = Z M/t = Li.
i'=1

inequality is an equality,

L:-L;:
ijz{ ZN ]-‘t,

SOR}; < Qf;, = 0andS}; =
wise, this inequality is strict,

M < [Li.Lﬂ ;.

M/t = [Lij'vﬂ. Other-

N

so there exists some> 0 such that

Myt = |2 o= ([2H] - n+a-e

N

j’:1 ]/:1

Let's now prove (iii). We know thaij < IVLZ-NL]'—‘ ¢

thereforeP;; < [%W . Also we can decomposk/; in
baset asM/; = P};t + Q};, and

-1
Mltj - Mfg ) Sfjt ¢ t
(]j@'jt +Q55) — (tpij +tRz’j)
= Pz‘j(t - 1) + ( i Rz’j)'

Distinguish two cases. In the case where

L. L.
t ¢ J




Fig. 5. lllustration of Ford-Fulkerson Construction.

then
Mj; = Pit, Qi; =0, Ri; =0,

thus

L;Vﬂ (t—1).

t—1
MG =Pyt 1) = My < |

Otherwise, in the case where

o e

N
we have

Mztj_l = PL(t—1)+(Q} — R}
|-ne-n+ay
Eale-n-@-n+e-1
LE] -,

becausegﬁj < t — 1 as shown before. Hence (iii) is cor-

IN
—~
S—

IN

rect in both cases and the three properties are proven by

recurrence.
Finally, note that all parts of the algorithm are done in

polynomial time, and thus the algorithm is also in polyno-

mial time. |

APPENDIX I
FORD-FULKERSON ALGORITHM

As explained in the section before, it is possible to use
Ford-Fulkerson’s max-flow algorithm [12] in order to con-
struct R?, and therefore the schedul§s. More specifi-
cally, as illustrated in Figure 5, construct the network as
follows. There is one sourcé€;, inputs,G outputs, and one
sink. The source is connected to each inpwith capacity
a;. Each input is connected to each outputvith capac-
ity dg,;>1, i.e. capacityl if Q;; > 1 and0 otherwise.
Finally, each outpuf is connected to the sink with capac-
ity b;. Since capacities are integer, the resulting flows will
also be integers, and will thus yield a correct mafgix
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