
STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 1

A Load-Balanced Switch with an Arbitrary
Number of Linecards

Isaac Keslassy, Shang-Tse Chuang, Nick McKeown
{keslassy, stchuang, nickm}@stanford.edu

Computer Systems Laboratory
Stanford University

Stanford, CA 94305-9030

Abstract— The load-balanced switch architecture is a
promising way to scale router capacity. It requires no cen-
tralized scheduler, requires no memory operating faster
than the line-rate, and can be built using a fixed, optical
mesh. In a recent paper we explained how to prevent packet
mis-sequencing and provide 100% throughput for all traf-
fic patterns, and described the design of a 100Tb/s router
using technology available within three years. But there
is one major problem with the load-balanced switch that
makes the basic mesh architecture impractical: Because the
optical mesh must be uniform, the switch does not work
when one or more linecards is missing or has failed. In-
stead we can use a passive optical switch architecture with
MEMS switches that are reconfigured only when linecards
are added and deleted, allowing the router to function when
any subset of linecards is present and working. In this paper
we derive an expression for the number of MEMS switches
that are needed, and describe an algorithm to configure
them. We prove that the algorithm will always find a cor-
rect configuration in polynomial time, and show examples
of its running time.

I. BACKGROUND

Our goal is to identify router architectures with pre-
dictable throughput and scalable capacity. At the same
time, we would like to identify architectures in which op-
tical technology (for example optical switches and wave-
length division multiplexing) can be used inside the router
to increase capacity by reducing power consumption.

In a previous paper [1] we explained how to build a
100Tb/s Internet router with a single-rack switch fab-
ric built from essentially zero-power passive optics, but
without sacrificing throughput guarantees. Compared to
routers available today, this is approximately 40 times
more switching capacity than can be put in a single rack,

This work was funded in part by the DARPA/MARCO Center for
Circuits, Systems and Software, by the DARPA/MARCO Interconnect
Focus Center, Cisco Systems, Texas Instruments, Stanford Networking
Research Center, Stanford Photonics Research Center, and a Wakerly
Stanford Graduate Fellowship.

1

2

3

4

1

2

3

4

Linecard
1

2

3

4

Linecard
1

2

3

4

AWGR

λ1(1), λ2 (1), λ3 (1), λ4 (1)

λ1(2), λ3 (2), λ3 (2), λ4 (2)

λ1(1), λ2 (4), λ3 (3), λ4 (2)

λ1(2), λ2 (1), λ3 (4), λ4 (3)

λ1(3), λ2 (2), λ3 (1), λ4 (4)

λ1(4), λ2 (3), λ3 (2), λ4 (1)

λ1(3), λ3 (3), λ3 (3), λ4 (3)

λ1(4), λ3 (4), λ3 (4), λ4 (4)

(a)

(b) (c)

Linecard Linecard Linecard

1

2

3

4

Fig. 1. Load-balanced router architecture

with throughput guarantees that no commercial router can
match today. The key to the scalability is the use of the
load-balanced switch, first described by C-S. Changet al.
in [2]. In [1] we extended the basic architecture so that
it has provably100% throughput for any traffic pattern,
and doesn’t mis-sequence packets. It is scalable, has no
central scheduler, is amenable to optics, and can simplify
the switch fabric by replacing a frequently scheduled and
reconfigured switch with a single, fixed, passive mesh of
WDM channels.

A load-balanced router based on an optical mesh is
shown in Figure 1. Figure 1(a) shows the basic mesh ar-
chitecture withN = 4 linecards interconnected by2N2

links. Each linecard in the first stage is connected to each
linecard in the center stage by a channel at rateR/N ,
whereR is the linerate andN is the number of linecards.
Likewise, each linecard in the center stage is connected to
each linecard in the final stage by a channel at rateR/N .
Essentially, the architecture consists of a single stage of
buffers sandwiched by two identical stages of switching.
The buffer at each center stage linecard input is partitioned

STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 2

into N separate FIFO queues, one per output (hence we
call them virtual output queues, VOQs).

The operation of the two meshes is quite different from
a normal single-stage packet switch. Instead of pick-
ing a switch configuration based on the occupancy of the
queues, packets arriving at each input are spread uni-
formly over the center stage linecards. A packet ar-
riving at time t to input linecardi is sent to linecard
[(i + t) modN] + 1; i.e. the mesh performs a cyclic shift,
and each input is connected to each output exactly1

N -th
of the time, regardless of the arriving traffic. The sec-
ond stage mesh is identical; it services each VOQ at fixed
rateR/N , regardless of its occupancy. Although they are
identical, it helps to think of the two stages as perform-
ing different functions. The first stage is a load-balancer
that spreads traffic over all the VOQs. The second stage
serves each VOQ at a fixed rate. The packet is put into the
VOQ at the center stage linecard according to its eventual
output. Sometime later, the VOQ will be served by the
second stage. The packet will then be transferred across
the second switch to its output, from where it will depart
the system.

Although Figure 1(a) appears to show3N linecards
(N for each stage), a real implementation would haveN
linecards, and each linecard would contain three logical
parts. This means that the two meshes can be replaced
by a single mesh running twice as fast, as shown in Fig-
ure 1(b). Every packet traverses the switch fabric twice:
Once from the input linecard to a VOQ in the center stage
linecard, then a second time from the VOQ to the output
linecard. Finally, we can replace the mesh ofN2 fibers by
2N fibers and an arrayed-waveguide router (AWGR [3]),
as shown in Figure 1(c). In this case, each input linecard
uses WDM to multiplex a separate channel at rate2R/N
for each linecard onto a single fiber. The AWGR is a
passive fixed device that permutes the channels so that
each linecard receives a channel at rate2R/N from each
linecard.

II. PROBLEM STATEMENT

A. Background

Unfortunately, the load-balanced switch based on a pas-
sive mesh requires all linecards to be present and work-
ing. The load-balanced switch works by spreading pack-
ets over all linecards, and therefore needs to be aware of
which linecards are present and which are not. If some
linecards are missing, traffic must be spread equally over
the remaining linecards.

This is a very real problem. Routers are often bought
with a subset of linecards present to start with, and more
are added as the network grows. Linecards fail and need

to replaced, or are removed as the topology changes. In
general, the router must operate when linecards are con-
nected to arbitrary ports.

The switch fabric must therefore be able to scatter traf-
fic uniformly over the linecards that are present. This
means the switch needs to be reconfigured as linecards
are added and removed, and we’ll no longer be able to use
a uniform fully-interconnected mesh. In [1] we described
a hybrid electro-optical architecture that solves this prob-
lem, and will operate with any subset of linecards; it is
shown in Figure 2. We encourage, and assume, that the
reader is familiar with [1]. Previously, we haven’t ex-
plained how to configure the switch, or even proved that it
can spread traffic uniformly over all linecards. In this pa-
per we describe an algorithm to do this, and prove that it
will always find a valid configuration, so long as we have
a sufficient number of MEMS switches.

B. Overview of problem

The architecture is arranged asG groups ofL linecards.
In the center,M statically configuredG × G MEMS
switches interconnect theG groups. The MEMS switches
are reconfigured only when a linecard is added or re-
moved. Each group of linecards spreads packets over
the MEMS switches using anL × M electronic cross-
bar. Each output of the electronic crossbar is connected to
a different MEMS switch over a dedicated fiber at a fixed
wavelength (the lasers are not tunable). Packets from the
MEMS switches are spread across theL linecards in a
group by anM × L electronic crossbar.

When all linecards are present the operation is quite
straightforward. For each linecard within a group, the
electronic crossbar sendsL consecutive packets to one
laser. It then sendsL consecutive packets to the next laser,
and so on, cycling through allG lasers in turn. The first
MEMS switch is statically configured to connect groupg
to groupg; the second MEMS switch connects groupg
to groupg + 1, and so on. This means that if a packet is
sent from groupg by laserk, it will be delivered to group
[(g+k−2) modG]+1. The electronic crossbar at the out-
put receivesL consecutive packets from each of the input
groups. It spreads these packets so that one packet from
each group goes to each of theL linecards. Hence, there
is an equal rate path between every pair of linecards.1

Things get more complicated when there are fewer
linecards present. We will illustrate the problem with a
simple switch with just three linecards. Figure 3(a) shows

1Strictly speaking, this only works whenL ≤ G since the numbers
of MEMS switches needed between groups is equal to

⌈
L2/(LG)

⌉
=

dL/Ge. If, say,G = 2 andL = 3, we need more MEMS switches;
but the operation is similar.

STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 3

Fixed
Lasers

Electronic
Switches

GxG
MEMS

Group 1

LxM
Crossbar

Linecard 1

Linecard 2

Linecard L

Group 2

LxM
Crossbar

Linecard 1

Linecard 2

Linecard L

LxM
Crossbar

Linecard 1

Linecard 2

Linecard L

Group G

MxL
Crossbar

Linecard 1

Linecard 2

Linecard L

Electronic
Switches

Optical
Receivers

Group 1

MxL
Crossbar

Linecard 1

Linecard 2

Linecard L

Group 2

MxL
Crossbar

Linecard 1

Linecard 2

Linecard L

Group G

GxG
MEMS

GxG
MEMS

GxG
MEMS

1

2

3

M

Static
MEMS

1

2

3

M

1

2

3

M

1

2

3

M

1

2

3

M

1

2

3

M

1

2

3

M

Fig. 2. Hybrid optical and electrical switch fabric.

three linecards connected as a full mesh; each linecard
sends at rate2R/3 to every other linecard. Now partition
the linecards into two groups,A andB, with two linecards
in groupA and one linecard in groupB, as shown in Fig-
ure 3(b). We will determine how the electronic crossbars
and MEMS switches are configured so that each pair of
linecards is connected at rate2R/3. GroupA needs to
send at an aggregate rate of8R/3 to groupA, and4R/3
to groupB; groupB needs to send at rate4R/3 to group
A and2R/3 to groupB. If we assume that each crossbar
output can send at maximum rate2R, we require two out-
puts and two MEMS switches to connect groupA to group
A. We therefore need a total of three MEMS switches, two
arranged in the straight configuration and one arranged in
the cross configuration. The correct configurations of the
MEMS switches are shown in Figure 3(c).

To spread packets uniformly over the linecards, we
need to pick the static configuration for each MEMS
switch, and the sequence of permutations followed by the
electronic crossbars. We will do this by finding a fixed-
length sequence of permutations for eachL×M crossbar,
then instruct each crossbar to cycle repeatedly through this
sequence. Following the convention in circuit switching,
we will call this sequence aframe.

Let us consider an example of how we might con-
struct a frame. Consider the example in Figure 3 again.
Since each linecard needs to spread its data uniformly over
three output linecards, the frame will have three slots. In
the frame, each linecard will send one packet to each of
the three output linecards. A conflict occurs if, when a

linecard sends a packet, the packet arrives at the output at
the same time as another packet; or, if the packet collides
with another packet in a MEMS switch. The algorithm
that determines the frame needs to be aware of these con-
flicts.

In the remainder of this paper, we first formally de-
scribe the problem in Section III. In Section IV, we de-
termine the minimum number of MEMS switches needed.
Finally in Sections V-VII, we describe an algorithm that
will correctly construct the frame.

III. L INECARD SCHEDULE PROBLEM

We will assume throughout that there areG groups;
group i containsLi linecards, and the total number of
linecards is:

N =
G∑

i=1

Li.

We will assume thatL1, L2, ..., LG are fixed for a given
linecard arrangement.

During every frame ofN time-slots each sending
linecard needs to be connected exactly once to each of the
N receiving linecards. Similarly, each receiving linecard
needs to be connected exactly once to each of theN send-
ing linecards. Furthermore, in every time-slot, each send-
ing linecard cannot connect to more than one receiving
linecard, and vice-versa.

Put mathematically, if sending linecardi is connected
to receiving linecardTij in time-slotj, then:

STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 4

(a)

(b)

(c)

Linecard 1

Linecard 2

Linecard 3

Linecard 1

Linecard 2

Linecard 3

2R/3

Linecard 1

Linecard 2

Linecard 3

Crossbar

Crossbar

Crossbar

Crossbar

Linecard 1

Linecard 2

Linecard 3

8R/3

4R/34R/3

2R/3

Linecard 1

Linecard 2

Linecard 3

2x3
Crossbar

2x3
Crossbar

3x2
Crossbar

3x2
Crossbar

Linecard 1

Linecard 2

Linecard 3

Static
MEMS

4R/3

4R/3

4R/3

2R/3

4R/3

Fig. 3. Example of a hybrid switch architecture with three linecards
in two groups. (a) A full linecard mesh logical view. (b) GroupB is
not fully populated, and so the rates between groups are different. (c)
The configuration of MEMS switches to achieve the required rates.





Tij′ 6= Tij for all j′ 6= j
Ti′j 6= Tij for all i′ 6= i
Tij ∈ {1, ..., N} for all i, j

We’ll call T the linecard schedule. T is a Latin square,
i.e. the numbers from1 toN appears exactly once in every
row and every column. We will refer to a time-slot as a
column.

For instance, let’s assume thatL1 = 3, L2 = 2, and
L3 = 2 (i.e., G = 3, N = 7). Then the following is a
linecard schedule:

T =




1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2

4 5 6 7 1 2 3
5 6 7 1 2 3 4

6 7 1 2 3 4 5
7 1 2 3 4 5 6




The last constraint arises from the use of MEMS
switches in the hybrid optical-electrical switch fabric. Let
Li represent the number of linecards in groupi. The rate
needed between groupi and groupj is equal to

(Li · 2R) · (Lj/N), where1 ≤ i, j ≤ G.

This is because the incoming traffic is spread uniformly
over allN receiving linecards, and groupj receives a por-
tion (Lj/N) of this traffic. As assumed above, two groups

can only communicate at a rate up to2R through any sin-
gle MEMS switch. Therefore, the minimum number of
MEMS switches between groupi and groupj is:

⌈
Li · 2R · Lj

N
· 1
2R

⌉
=

⌈
Li · Lj

N

⌉
.

We will call this theMEMS constraint.
Matrix T above doesn’t meet the MEMS constraint be-

cause the maximum number of connections allowed be-
tween group 1 and group 1 at any time-slot is

⌈
3·3
7

⌉
= 2.

Similarly the second and third groups also don’t meet the
constraint.

IV. N UMBER OF MEMS SWITCHES NEEDED FOR A

L INECARD SCHEDULE

The following theorem shows how many MEMS
switches are needed in order to build a linecard schedule
that satisfies the MEMS constraint.

Theorem 1:We need at least

α =
G∑

j=1

⌈
L · Lj

N

⌉
≤ L + G− 1

static MEMS switches in order to build a linecard sched-
ule that satisfies the MEMS constraint, whereL =
maxi(Li).

Proof: A MEMS switch can connect a sending
group to at most one receiving group, and the minimum
number of MEMS switches needed to connect sending
groupi to all receiving groups is:

G∑

j=1

⌈
Li · Lj

N

⌉
.

In particular, assume that the largest group hasL =
maxi(Li) linecards. Then the total number of MEMS
switches needed by the largest group to connect to all re-
ceiving groups is at least:

α =
G∑

j=1

⌈
L · Lj

N

⌉
<

G∑

j=1

(
L · Lj

N
+ 1

)
= L + G.

Becauseα, L andG are integers,α ≤ L + G− 1.
Hence we need at mostL+G−1 static MEMS switches

to create a uniform mesh with any linecard arrangement.

In our example withL1 = 3, L2 = 2, andL3 = 2,

α =
⌈
3 · 3
7

⌉
+

⌈
3 · 2
7

⌉
+

⌈
3 · 2
7

⌉
= 4.

It is clear thatα ≤ L + G − 1 = 5. Using a different
linecard configuration whereL = 3 andG = 3, it is also
possible to reach the upper bound, for instance withL1 =
3, L2 = 3, andL3 = 2.

STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 5

V. VALID SCHEDULES

A. Linecard Schedule

In this section, we will find an algorithm that works
with exactlyα MEMS switches.

We will introduce different types of schedules to help
clarify the presentation of the linecard schedule solution.
The three new schedules are (1) linecard-to-linecard, (2)
linecard-to-group, and (3) group-to-group schedules. As
described in the definitions below, the first part of the
schedule name represents whether the schedule deter-
mines the specific sending linecards or only the sending
groups, and the second part of the name specifies whether
the schedule determines the specific receiving linecards
or only the receiving groups. For instance, a linecard-to-
group schedule will determine which linecard will send to
which receiving group in each column.

Definition 1: A linecard-to-linecard(L-L) scheduleT
is a matrix withN rows corresponding to theN sending
linecards,N columns corresponding to theN time-slots
of the frame, and one receiving linecard index per row-
column intersection.

Note that a linecard-to-linecard schedule is the same as
a linecard schedule.

Definition 2: An L-L scheduleT is said to bevalid iff
a receiving linecard appears exactly once in every row and
column ofT , and at most

⌈
Li·Lj

N

⌉
receiving linecards from

groupj are connected to sending linecards from groupi
in any column ofT (MEMS constraint).

In other words,T is a valid L-L schedule if it is a Latin
square satisfying the MEMS constraints. Here is an ex-
ample of a L-L schedule which is valid.

T =




1 4 2 6 3 5 7
2 6 1 5 7 3 4
4 3 7 1 5 6 2

5 1 3 4 2 7 6
7 5 4 3 6 2 1

3 2 6 7 1 4 5
6 7 5 2 4 1 3




Notice that the MEMS constraint used in Definition 2
applies to groups, not linecards. For instance, the example
matrix T is not allowed to have more than two receiving
linecards from the first group in the first three rows in any
column. Therefore, in order to build L-L schedules, we
cannot only consider the constraints on linecards, but also
need to take into account the constraints on groups. The
MEMS constraint makes the linecard schedule problem
non-trivial.

We will show that it is possible to build a valid
group-to-groupschedule that only considers constraints
on groups, and then successively build a validlinecard-
to-groupschedule and finally a validlinecard-to-linecard

schedule which incorporates the constraints on linecards.
We will define and provide examples for these schedules
below.

B. Linecard-to-Group Schedule

Definition 3: A linecard-to-group(L-G) scheduleU is
a matrix with N rows corresponding to theN sending
linecards,N columns corresponding to theN time-slots
of the frame, and one letter per row-column intersection
corresponding to the receiving group.

Definition 4: An L-G scheduleU is said to bevalid iff
the ith letter appears exactlyLi times in each row and
each column, and at most

⌈
Li·Lj

N

⌉
times in the linecards

of groupi in any column ofU (MEMS constraint).
Here is an example of a valid L-G schedule.

U =




A B A C A B C
A C A B C A B
B A C A B C A

B A A B A C C
C B B A C A A

A A C C A B B
C C B A B A A




Notice that matrixU is the same as matrixT except that
the receiving linecard indices are replaced with the letters
corresponding to the receiving linecard group.

C. Group-to-Group Schedule

Definition 5: A group-to-group(G-G) scheduleV is
a matrix with G rows corresponding to theG sending
linecard groups,N columns corresponding to theN time-
slots of the frame, andLi letters per row-column intersec-
tion in row i.

Definition 6: A G-G scheduleV is said to bevalid iff
the ith letter appears exactlyLi · Lj times in each row
j (corresponding to sending groupj), Li times in each
column, and at most

⌈
Li·Lj

N

⌉
times in any row-column in-

tersection in rowi (MEMS constraint).
Here is an example of a valid G-G schedule.

V =




AAB ABC AAC ABC ABC ABC ABC

BC AB AB AB AC AC AC

AC AC BC AC AB AB AB




Notice that one can get matrix V by grouping together
the rows corresponding to the same group in matrix U.

D. Schedule Equivalence Theorem

Given a valid L-L schedule, we can easily deduce a
valid L-G schedule, and then a valid G-G schedule. How-
ever, it is not obvious how to create a valid L-L schedule

STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 6

from a valid G-G schedule. The following theorem, which
is proved in the appendix, shows that we can.

Theorem 2:Consider the following three schedules:
(i) A valid linecard-to-linecard (L-L) scheduleT
(ii) A valid linecard-to-group (L-G) scheduleU
(iii) A valid group-to-group (G-G) scheduleV
Given one schedule we can create the other two: (L-

L)⇔(L-G)⇔(G-G).
In the next section, we will show how to construct a

valid G-G schedule, hence proving that it is always possi-
ble to obtain a linecard schedule that satisfies the MEMS
constraint.

VI. CONSTRUCTING A VALID G-G SCHEDULE

A. Algorithm for Constructing a Valid G-G Schedule

We will now construct an algorithm that recursively
builds a valid group schedule time-slot after time-slot, for
theN time-slots of the frame. We will then show in the
appendix that the algorithm finds a valid solution, and that
it has a polynomial complexity.

At the start:
Let t be the number of time-slots left to schedule after

each iteration. At the start,t = N , since all the time-slots
are unscheduled. Also, letM ≡ M t = MN be the initial
matrix of all the elements that need to be scheduled. Its
rows represent the sending groups, its columns the receiv-
ing groups (letters “A”, “B”, ...). At the start, for alli, j,
Mij = Li ·Lj , i.e. there areLi ·Lj connections to sched-
ule from sending groupi to receiving groupj during the
whole frame.

Iteratively:
For t = N,N − 1, ..., 1, proceed as follows.
1) For eachi, j, do the decomposition ofM t

ij in base

t: M t
ij = P t

ij · t + Qt
ij (i.e. P t =

⌊
1
t M

t
⌋
,

Qt = M t−P t · t). In this iteration, we will start by
schedulingP t, and then consider the remainderQt

and schedule a part of it such that all the constraints
are satisfied.

2) Define the vectorsat andbt such that




at
i =

∑G

j′=1
Qt

ij′
t for all i

bt
j =

∑G

i′=1
Qt

i′j
t for all j

at andbt are integer vectors (cf proof).
3) Find a 0-1 matrixRt ≤ Qt such that:





∑G
j′=1 Rt

ij′ = at
i for all i∑G

i′=1 Rt
i′j = bt

j for all j
Rt

ij ∈ {0, 1} for all i, j

The proof in the appendix shows thatRt exists (it
uses graph theory for proof of existence, and the
Ford-Fulkerson max-flow algorithm for building it).

4) Use the scheduleSt = P t + Rt for this time-slot.
UpdateM t−1 = M t − St.

B. Example

We build the matrixV given the schedules,St, pro-
vided in Table I. More specifically,St

ij represents the
number of occurrences of thejth letter in theith row in
columnN − t+1 of matrixV . For instance, the schedule

S7 =




2 1 0
0 1 1
1 0 1




helps us create the first column ofV having twoA’s and
oneB in the first row, oneB and oneC in the second row,
and oneA and oneC in the last row.S6 will determine
the second column,S5 will determine the third column,
and so on. The resulting matrix is

V =




AAB ABC AAC ABC ABC ABC ABC

BC AB AB AB AC AC AC

AC AC BC AC AB AB AB




VII. VALID L-L SCHEDULE

A. From a Valid G-G Schedule to a Valid L-G Schedule

We will now construct an algorithm that successively
builds a valid L-G schedule given a valid G-G schedule,
and then a valid L-L schedule given a valid L-G schedule.
This algorithm will be used in the appendix to prove The-
orem 2. In this section, we will transform the valid G-G
schedule described in Section V into a valid L-G schedule.

For each1 ≤ j ≤ G, consider rowj in V . In our
example, the first row is:

(AAB ABC AAC ABC ABC ABC ABC)

We want to subdivide each rowj into Lj sub-rows, cor-
responding to the subdivision of each sending groupj into
Lj sending linecards, thus forming a valid L-G schedule.

First, each letter hasLi · Lj occurrences in any given
row of V . Arbitrarily divide them intoLi subscripted let-
ters (“sub-letters”) ofLj elements. In our example, we
transform the letters ofV into N arbitrarily assigned sub-
letters (A1, A2, A3, B1, B2, C1, C2). For instance, since
A appears9 times in the first row, we replace theA′s ar-
bitrarily with 3 A1’s, 3 A2’s and 3A3’s:

(A1A1B1; A1B1C1; A2A2C1; A2B1C1; A3B2C2; A3B2C2;

A3B2C2)

STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 7

TABLE I
EXAMPLE OF APPLICATION OF THE ALGORITHM

M7 =

(
9 6 6
6 4 4
6 4 4

)
, P 7 =

(
1 0 0
0 0 0
0 0 0

)
, Q7 =

(
2 6 6
6 4 4
6 4 4

)
, R7 =

(
1 1 0
0 1 1
1 0 1

)
, S7 =

(
2 1 0
0 1 1
1 0 1

)
.

M6 =

(
7 5 6
6 3 3
6 4 3

)
, P 6 =

(
1 0 1
1 0 0
0 0 0

)
, Q6 =

(
1 5 0
0 3 3
6 4 3

)
, R6 =

(
0 1 0
0 1 0
1 0 1

)
, S6 =

(
1 1 1
1 1 0
1 0 1

)
.

M5 =

(
6 4 5
5 2 3
4 4 2

)
, P 5 =

(
1 0 1
1 0 0
0 0 0

)
, Q5 =

(
1 4 0
0 2 3
4 4 2

)
, R5 =

(
1 0 0
0 1 0
0 1 1

)
, S5 =

(
2 0 1
1 1 0
0 1 1

)
.

M4 =

(
4 4 4
4 1 3
4 3 1

)
, P 4 =

(
1 1 1
1 0 0
1 0 0

)
, Q4 =

(
0 0 0
0 1 3
0 3 1

)
, R4 =

(
0 0 0
0 1 0
0 0 1

)
, S4 =

(
1 1 1
1 1 0
1 0 1

)
.

Finally, for t=3,2,1:M t =

(
t t t
t 0 t
t t 0

)
= t

(
1 1 1
1 0 1
1 1 0

)
, Rt =

(
0 0 0
0 0 0
0 0 0

)
andSt =

(
1 1 1
1 0 1
1 1 0

)
.

In row j of matrix V , each of theN sub-letters hasLj

occurrences, and each of theN columns hasLj elements.
Let’s form a new matrix that has sub-letters as inputs and
columns as outputs. In this new matrix, all columns and
all rows haveLj elements. In our example, the new matrix
for the first row ofV is :




col.1 col.2 col.3 col.4 col.5 col.6 col.7

A1 2 1 0 0 0 0 0
A2 0 0 2 1 0 0 0
A3 0 0 0 0 1 1 1
B1 1 1 0 1 0 0 0
B2 0 0 0 0 1 1 1
C1 0 1 1 1 0 0 0
C2 0 0 0 0 1 1 1




We can now apply the Birkhoff-von Neumann decom-
position theorem to this matrix, by decomposing it into a
sum ofLj permutations [4], [5].2 We obtainLj permuta-
tions. By reading column after column, each of these per-
mutations gives a sequence of sub-letters that corresponds
to a row of the desired L-G schedule. Therefore, theLj

permutations yield theLj rows of the L-G schedule corre-
sponding to groupj. In our example, the first permutation

2Because all elements are integers we could use graph-coloring in-
stead [6][7][8][9].

could be:



col.1 col.2 col.3 col.4 col.5 col.6 col.7

A1 1 0 0 0 0 0 0
A2 0 0 1 0 0 0 0
A3 0 0 0 0 1 0 0
B1 0 1 0 0 0 0 0
B2 0 0 0 0 0 1 0
C1 0 0 0 1 0 0 0
C2 0 0 0 0 0 0 1




,

yielding the first row of:

(
A1 B1 A2 C1 A3 B2 C2

A1 C1 A2 B1 C2 A3 B2

B1 A1 C1 A2 B2 C2 A3

)

We finally replace each sub-letter by the corresponding
letter, and get the valid L-G schedule. Upon examination
of the algorithm, it is clear that we only permute letters
within the same column of the same sending group, thus
yielding a valid L-G schedule. In our example, the result-
ing L-G schedule is:

U =




A B A C A B C
A C A B C A B
B A C A B C A

B A A B A C C
C B B A C A A

A A C C A B B
C C B A B A A




STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 8

B. From a Valid L-G Schedule to a Valid L-L Schedule

In the previous section, we constructed a valid L-G
schedule given a valid G-G schedule. In this section, we
will transform the valid L-G schedule into a valid L-L
schedule.

We apply the Birkhoff-von Neumann theorem (or
graph-coloring) for each letter. First, we replace eachA
with a “1”, and every other letter with a “0”. For our ex-
ample, we get:




A 0 A 0 A 0 0
A 0 A 0 0 A 0
0 A 0 A 0 0 A

0 A A 0 A 0 0
0 0 0 A 0 A A

A A 0 0 A 0 0
0 0 0 A 0 A A




→




1 0 1 0 1 0 0
1 0 1 0 0 1 0
0 1 0 1 0 0 1

0 1 1 0 1 0 0
0 0 0 1 0 1 1

1 1 0 0 1 0 0
0 0 0 1 0 1 1




We then decompose the above matrix into the sum of
Li different permutations, such that thelth permutation
will indicate at which times linecardl is scheduled. Since
there are exactlyL1 ones (corresponding to theL1 A’s)
in each row and column, this is possible by Birkhoff-von
Neumann. In our example, we can decompose the above
matrix into the sum of three permutations:




1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 1 0 0 0 0 0
0 0 0 0 0 0 1

0 0 0 0 1 0 0
0 0 0 0 0 1 0




+




0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1

0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 1 0 0 0 0 0
0 0 0 1 0 0 0




+




0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0

1 0 0 0 0 0 0
0 0 0 0 0 0 1




Applying this method to each letter, we then create a
valid L-L schedule, with exactly one occurrence of each
receiving linecard index in each row and column. In our
example, we get the following valid L-L schedule, hence
concluding the construction process:

0

10

20

30

40

50

0 10 20 30 40

Number of Groups

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Fig. 4. Running time of our implementation of the algorithm. Times
are averaged over 100 runs for each value ofG.

T =




1 4 2 6 3 5 7
2 6 1 5 7 3 4
4 3 7 1 5 6 2

5 1 3 4 2 7 6
7 5 4 3 6 2 1

3 2 6 7 1 4 5
6 7 5 2 4 1 3




VIII. P RACTICAL CONSIDERATIONS

To estimate how long the algorithm takes to run in
practice, a program was implemented using the ‘C’ pro-
gramming language (source code and detailed description
available at [10]). Given an arrangement of linecards and
groups, the program finds a valid G-G schedule to config-
ure the MEMS switches and electronic crossbars.

We ran the program on a Pentium III operating at 1GHz,
with different values ofG, N andL, up to maximum val-
uesN = 640, L = 16 andG = 40. In each successive
run, the placement of linecards in the rack was picked uni-
formly at random. The running times, averaged over 100
runs per value ofG, are shown in Figure 4.

Our implementation runs too slowly to pick a new con-
figuration in real-time when a linecard is added, removed
or fails. The typical requirement would be that the router
be up and running again with 50ms of a change, whereas
with N = 640 the algorithm took up to 50 seconds to
complete. Although our implementation is not ideally op-
timized, it is unlikely to run fast enough to make real-time
decisions.

In practice, we could run the algorithm in advance and
store the results. When a certain group of linecards is
present, we can pre-calculate all the configurations that
differ by one or two linecards, or one or two groups (e.g.
if a whole rack is powered down, or fails). Alternatively,
but less likely, the algorithm could be implemented to

STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 9

run very quickly in a custom ASIC. The algorithm lends
itself to fine-level parallelism, especially in the parallel
Birkhoff-von Neumann decompositions, and would run a
lot faster than in software.

IX. CONCLUSIONS

In this paper, we showed how it is possible to reconfig-
ure the load-balanced switch when one or more linecards
is missing or has failed. We found that using the archi-
tecture described in [1], we need at mostL + G − 1
static MEMS switches in order to build a linecard sched-
ule that satisfies the MEMS constraint, whereG is the
number of groups andL is the maximum number of
linecards per group. We then described a polynomial-time
algorithm to configure the packet transmissions and the
MEMS switches, and proved that it is not only necessary,
but also sufficient to useα static MEMS. This was done
based on edge coloring algorithms in a regular bipartite
graph and the Ford-Fulkerson max-flow algorithm.

X. ACKNOWLEDGEMENTS

The authors would like to thank Professors Balaji Prah-
bakar and Yinyu Ye for useful discussions; and Mingjie
Lin for implementing the algorithm used to generate re-
sults in Figure 4.

REFERENCES

[1] Isaac Keslassy, Shang-Tse Chuang, Kyoungsik Yu, David Miller,
Mark Horowitz, Olav Solgaard, Nick McKeown, “Scaling Inter-
net routers using optics,”ACM SIGCOMM 2003, Karlsruhe, Ger-
many, Sep. 2003.

[2] C.S. Chang, D.S. Lee and Y.S. Jou, “Load balanced Birkhoff-von
Neumann switches, part I: one-stage buffering,”IEEE HPSR ’01,
Dallas, May 2001.

[3] P. Bernasconi, C. Doerr, C. Dragone, M. Capuzzo, E. Laskowski
and A. Paunescu, “Large N x N waveguide grating routers,”Jour-
nal of Lightwave Technology, Vol. 18, No. 7, pp. 985-991, July
2000.

[4] C.S. Chang, J.W. Chen, and H.Y. Huang, “On service guarantees
for input-buffered crossbar switches: a capacity decomposition
approach by Birkhoff and Von Neumann,”IEEE IWQoS, London,
1999.

[5] G. D. Birkhoff, “Tres observaciones sobre el algebra lineal,”Uni-
versidad Nacional de Tucuman Revista, Serie A, vol. 5, pp. 147-
151, 1946.

[6] R. Cole, K. Ost and S. Schirra, “Edge-coloring bipartite multi-
graphs in O(E log D) time,”Combinatorica, vol. 21, pp. 5-12,
2001.

[7] R. Cole, K. Ost and S. Schirra, “Edge-coloring bipartite multi-
graphs in O(E log D) time,”New York University Technical Report
NYU-TR1999-792, New York, Sep. 1999.

[8] A. Schrijver, “Bipartite edge-coloring in O(∆m) time,” SIAM J.
Comput., vol. 28, pp. 841-846, 1999.

[9] N. Alon, “A simple algorithm for edge-coloring bipartite multi-
graphs,”Information Processing Letters, vol. 85, issue 6, pp. 301-
302, March 2003.

[10] Switch configuration algorithm, available at
http://yuba.stanford.edu/or/SwitchConfig.c

[11] A. Schrijver, “A course in combinatorial optimization,” available
at http://www.cwi.nl/˜lex/files/dict.ps, Feb. 2003.

[12] L.R. Ford and D.R. Fulkerson,Flows in Networks, Princeton
University Press, 1962.

APPENDIX I
PROOF FORTHEOREM 2

First, as shown in Section V, it is easy to successively
build a valid L-G schedule from a valid L-L schedule and
a valid G-G schedule from a valid L-G schedule.

On the other hand, Section VII shows the algorithm
which successively constructs a valid L-G schedule from
a valid G-G schedule and a valid L-L schedule from a
valid L-G schedule. This is true as long as we can decom-
pose the matrix into a sum of permutations (for example,
using a Birkhoff-von Neumann decomposition or graph-
coloring), which we can always do when the sums on each
row and each column are equal [4], [5].

APPENDIX II
PROOFS FOR THECONSTRUCTION OF THEVALID G-G

SCHEDULE

Proof: Assume that for a givent,




∑G
j′=1 M t

ij′ = Lit for all i∑G
i′=1 M t

i′j = Ljt for all j

0 ≤ M t
ij ≤

⌈
Li·Lj

N

⌉
t for all i, j

This is obviously true fort = N by definition ofM t.
We will prove at the end of the proof that if we assume it
for t, it’s also true fort− 1.

First, sinceQt = M t − P t, using the definition ofP t

we get:




(
∑G

j′=1 Qt
ij′) modt = 0 for all i

(
∑G

i′=1 Qt
i′j) modt = 0 for all j

0 ≤ Qt
ij ≤ t− 1 for all i, j

Therefore,at andbt are integer vectors.
Second, from the definition ofat andbt, they both have

the same sum - call itσ.
Third, let’s prove that there exists a matrixRt satis-

fying the conditions above. In order to prove this, we
use exercise 3.13 in the paper by A. Schrijver [11]. It
tells us thatRt exists iff for each subsets1 of the rows
and for each subsets2 of the columns,σ + |E(s1, s2)| ≥∑

i∈s1
ai +

∑
j∈s2

bj , where|E(s1, s2)| denotes the num-
ber of non-zero elementsQt

ij with i ∈ s1, j ∈ s2. But we
know that

∑

i∈s1,j∈s2

Qt
ij =

∑

i∈s1

Qt
ij −

∑

i∈s1,j∈s2
C

Qt
ij

STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 10

∑

i∈s1,j∈s2

Qt
ij ≥ t

∑

i∈s1

ai −
∑

j∈s2
C

Qt
ij

∑

i∈s1,j∈s2

Qt
ij ≥ t

∑

i∈s1

ai − t
∑

j∈s2
C

bj

In addition, sincet− 1 ≥ Qt
ij ,

∑

i∈s1,j∈s2

tδQt
ij≥0 ≥

∑

i∈s1,j∈s2

Qt
ij ,

therefore
∑

i∈s1,j∈s2

tδQt
ij≥0 ≥ t

∑

i∈s1

ai − t
∑

j∈s2
C

bj .

Since|E(s1, s2)| =
∑

i∈s1,j∈s2
δQt

ij≥0,

|E(s1, s2)| ≥
∑

i∈s1

ai −
∑

j∈s2
C

bj =
∑

i∈s1

ai +
∑

j∈s2

bj − σ.

ThusRt exists. Note that it is possible to construct it in
polynomial time using Ford-Fulkerson (see next section).

Fourth, let’s show that the resulting scheduleSt will
satisfy the MEMS constraint, i.e. for alli, j,

St
ij ≤

⌈
Li · Lj

N

⌉
.

We know that

St
ij = P t

ij + Rt
ij =

⌊
1
t
M t

ij

⌋
+ Rt

ij ,

Rt
ij ≤ Qt

ij = M t
ij − t

⌊
1
t
M t

ij

⌋
,

Rt
ij ≤ 1,

and

M t
ij ≤

⌈
Li · Lj

N

⌉
t.

Distinguish two cases regarding this last inequality. If this
inequality is an equality,

M t
ij =

⌈
Li · Lj

N

⌉
t,

soRt
ij ≤ Qt

ij = 0 andSt
ij = M t

ij/t =
⌈

Li·Lj

N

⌉
. Other-

wise, this inequality is strict,

M t
ij <

⌈
Li · Lj

N

⌉
t,

so there exists someε > 0 such that

M t
ij/t =

⌈
Li · Lj

N

⌉
− ε = (

⌈
Li · Lj

N

⌉
− 1) + (1− ε).

Thus,
⌊
1
t
M t

ij

⌋
=

⌈
Li · Lj

N

⌉
− 1 + b1− εc ≤

⌈
Li · Lj

N

⌉
− 1

and

St
ij ≤

⌊
1
t
M t

ij

⌋
+ Rt

ij ≤
⌊
1
t
M t

ij

⌋
+ 1 ≤

⌈
Li · Lj

N

⌉
.

Note that in both cases

St
ij ≤

⌈
Li · Lj

N

⌉
.

Fifth, let’s complete the recursion hypothesis and show
that:





(i)
∑G

j′=1 M t−1
ij′ = Li(t− 1) for all i

(ii)
∑G

i′=1 M t−1
i′j = Lj(t− 1) for all j

(iii) 0 ≤ M t−1
ij ≤

⌈
Li·Lj

N

⌉
(t− 1) for all i, j

We’ll use the assumptions onM stated at the start of the
proof, and the definitionM t−1 = M t − St.

Let’s first prove (i) by showing that

G∑

j′=1

St
ij′ = Li

(the proof for (ii) is similar). By definition,

G∑

j′=1

St
ij′ =

G∑

j′=1

(P t
ij′ + Rt

ij′),

and
G∑

j′=1

Rt
ij′ = ai = (

G∑

j′=1

Qt
ij′)/t,

thus

G∑

j′=1

St
ij′ =

G∑

j′=1

(tP t
ij′ + Qt

ij′)/t =
G∑

j′=1

M t
ij′/t = Li.

Let’s now prove (iii). We know thatM t
ij ≤

⌈
Li·Lj

N

⌉
t,

thereforeP t
ij ≤

⌈
Li·Lj

N

⌉
. Also we can decomposeM t

ij in

baset asM t
ij = P t

ijt + Qt
ij , and

M t−1
ij = M t

ij − St
ij

= (P t
ijt + Qt

ij)− (P t
ij + Rt

ij)
= P t

ij(t− 1) + (Qt
ij −Rt

ij).

Distinguish two cases. In the case where

P t
ij =

⌈
Li · Lj

N

⌉
,

STANFORD HPNG TECHNICAL REPORT TR03-HPNG-080102 11

source sink
1

2

i

G

1

2

j

G

�
{Qij>0}

Fig. 5. Illustration of Ford-Fulkerson Construction.

then
M t

ij = P t
ijt, Qt

ij = 0, Rt
ij = 0,

thus

M t−1
ij = P t

ij(t− 1) = M t
ij

t− 1
t

≤
⌈
LiLj

N

⌉
(t− 1).

Otherwise, in the case where

P t
ij ≤

⌈
Li · Lj

N

⌉
− 1,

we have

M t−1
ij = P t

ij(t− 1) + (Qt
ij −Rt

ij)
≤ (

⌈
Li·Lj

N

⌉
− 1)(t− 1) + Qt

ij

≤
⌈

Li·Lj

N

⌉
(t− 1)− (t− 1) + (t− 1)

=
⌈

LiLj

N

⌉
(t− 1),

becauseQt
ij ≤ t − 1 as shown before. Hence (iii) is cor-

rect in both cases and the three properties are proven by
recurrence.

Finally, note that all parts of the algorithm are done in
polynomial time, and thus the algorithm is also in polyno-
mial time.

APPENDIX III
FORD-FULKERSON ALGORITHM

As explained in the section before, it is possible to use
Ford-Fulkerson’s max-flow algorithm [12] in order to con-
structRt, and therefore the schedulesSt. More specifi-
cally, as illustrated in Figure 5, construct the network as
follows. There is one source,G inputs,G outputs, and one
sink. The source is connected to each inputi with capacity
ai. Each inputi is connected to each outputj with capac-
ity δQij≥1, i.e. capacity1 if Qij ≥ 1 and0 otherwise.
Finally, each outputj is connected to the sink with capac-
ity bj . Since capacities are integer, the resulting flows will
also be integers, and will thus yield a correct matrixRt.

