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Abstract

Load-balancing algorithms for systems that operate in heavy traffic are known to lead, under
suitable conditions, to state space collapse (SSC). This term refers to the phenomenon where
imbalance is negligible compared to queue lengths. Specifically, whereas queue lengths behave
diffusively, the size of imbalance is at a sub-diffusive scale: denoting by n the usual scaling
parameter, the former and the latter are of order O(n1/2) and o(n1/2), respectively. In this paper
we consider load balancing for time-varying systems. SSC results and the standard techniques
on which they are based do not apply to these systems, which (a) are not in heavy traffic, thus
queue lengths may reach levels as high as O(n), and (b) have time-varying traffic intensities that
cause transitions between underloaded, critically loaded and overloaded regimes. Our results
extend SSC far beyond the heavy traffic setting, by establishing sub-diffusive (i.e., o(n1/2))
balance for time-varying systems.

To exhibit the breadth of the described phenomenon, the results address three load-balancing
models. The first is the-power-of-d-choices (SQ(d)), where arrivals from a single stream are
routed to the shortest among d randomly-chosen queues, where 1 < d ≤ N , and N denotes
the fixed number of queues in the system. The second is redundancy-d (R(d)), where jobs are
replicated d times, routed simultaneously to d randomly-chosen queues, and all but the first
replica to be admitted into service are canceled. The third model is longest queue first (LQF),
where a single resource is shared by N job classes, and the job that receives service is always
selected from the queue that is longest.

As an application of these results, asymptotic optimality of SQ(d) and R(d) is shown, with
an optimality guarantee of order o(n1/2) in the aforementioned framework, where in particular
queue sizes may reach O(n). Moreover, in the special case of the standard heavy traffic setting,
the results are shown to yield new, explicit sufficient conditions for SSC.

AMS subject classification: 60F170, 60J60, 60K25, 93E20.

Keywords: Randomized load-balancing, time-varying queues, join the shortest queue, longest
queue first, power of choice, task redundancy, redundancy routing, job cancellations, diffusion
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1 Introduction

In this paper we study the performance of load-balancing algorithms in time-varying queueing
systems. Since the goal of load balancing algorithms is to distribute load evenly among a number
of different channels, the degree to which delays or queue lengths equalize gives a good indication
on their performance. Known results in this context are obtained via a heavy traffic analysis,
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which is concerned with the asymptotic behavior of the delay or queue length at the diffusion scale
under a critical load condition. Consider, for example, the well-known join-the-shortest-queue policy,
denoted in the paper by SQ(N), where arrivals from a single stream are routed to the shortest among
N queues, each associated with a single server. Under this policy, it is known that equalization is
achieved in heavy traffic at a scale smaller than that of the stochastic fluctuations. That is, denoting
by n the heavy traffic scaling parameter, arrival and service rates scale like n, and queue lengths are
diffusive, i.e., scale like n1/2, whereas the queue length deviation process, defined as the difference
between the greatest and smallest queue length as it varies over time, is sub-diffusive, i.e., of order
o(n1/2). This result is known since Reiman’s paper [57] and has been referred to as state space
collapse (SSC). It is valid also for the-power-of-d-choices policy, denoted SQ(d), in which arrivals
are routed to the shortest among d randomly chosen queues out of the N queues, for 1 < d ≤ N .
This is true even if servers are heterogeneous, under some further conditions, as shown by Chen and
Ye [18].

The goal of this paper is to argue that sub-diffusivity of the deviation process (SDDP) is not
limited to heavy traffic. Our main results establish SDDP in settings that accommodate server
heterogeneity and time-varying arrival and service intensities. These systems do not adhere to the
critical load condition and need not exhibit diffusive fluctuations away from zero for the queue
length process. In particular, the queue length may reach levels as high as O(n), and thus one
might expect the imbalance to be negligible with respect to n, but not to n1/2. Compared to this,
the results we obtain are much sharper, as the scale of imbalance is shown to be o(n1/2) for broad
classes of time-varying traffic intensities, under which the system may undergo transitions between
underloaded, critical and overloaded regimes. To our knowledge, this is the first time SDDP has
been established for any time-varying system. This includes the most basic load balancing model,
namely SQ(N).

To exhibit the breadth of this phenomenon, our results address three basic, well-known load-
balancing models. The basic structures of their queueing models are depicted in Figure 1. The first
two models address balancing among a fixed number, N , of resources, by routing a stream of arrivals
to one of the resources according to the state of the system. One is the aforementioned SQ(d), and
another is join the least workload, LW(d) (here and throughout, 1 < d ≤ N , and N denotes the
total number of queues). Under LW(d), arrivals are routed to a queue containing the least work
(measured in time units) among d queues that, again, are chosen at random. Our results on the
latter policy directly apply to another load balancing scheme, namely Redundancy-d (R(d)), where
arriving jobs are replicated d times, and the replicas, referred to as tasks, are sent to randomly
chosen queues. When the first among the d tasks is accepted to service, the other d− 1 replicas are
canceled. In a sense that is made precise in §2.2, R(d) and LW(d) are mathematically equivalent.
(This relation has been noticed before in [49] for the case d = N , but was not proven.) The third
model studied in this paper consists of a single resource shared by N job classes, where each class
has its own arrival stream and the job that receives service is always selected from the queue that
is longest. Within each class, service is given by order of arrival. This discipline is referred to as
longest queue first (LQF).

In all three models the deviation process is a natural performance measure, and it is of prime
importance to characterize its scale. As mentioned above, our first main contribution, SDDP, is to
show that its scale is sub-diffusive. (We reserve the term SSC to the context in which it is used
in the literature, that is, when the critical load condition holds.) By no means does SDDP hold in
complete generality; we provide a simple counterexample to make this point. The conditions under
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which we establish SDDP are formulated in terms of the range of values that the arrival and service
intensities take. For example, under SQ(d), assume that the rate of arrivals varies within an interval
of the form [λ̄minn, λ̄maxn], and the rates of service all vary within an interval [µ̄minn, µ̄maxn]. We
find a condition of the form µ̄max− µ̄min < λ̄minϕ

∗ that assures SDDP, where ϕ∗ is a constant that
depends on N and d. The SDDP result obtained in the case of LW(d) (and relevant also to R(d))
addresses the workload deviation process, defined in terms of workload, analogously to the queue
length deviation process. The one for LQF again refers to queue length. Let us reiterate that the
reason for putting together results on three different models in this paper is the aim to show that
the described phenomenon is broad; indeed, it occurs under three different policies. Although the
intuition is similar in the three models, the details of the proof turn out to be quite different in each
case.

Whereas our main goal is to study SDDP, our results have further significant implications.
The first is a set of asymptotic optimality (AO) results. In a heavy traffic setting, AO usually
refers to showing that a certain policy performs better than any other policy in the sense that the
performance measure (such as the sum of all queue lengths or the total workload) under this policy
is stochastically dominated by that under any other policy up to an error of order o(n1/2). The
most relevant result of this kind is [18], which proves AO of a balanced routing policy proposed in
that paper, in a setting that allows for server heterogeneity. Their technique also covers SQ(d). Our
AO results are similar in that they cover SQ(d) (as well as R(d)/LW(d)), and that the optimality
guarantee is o(n1/2). The fundamental difference is that we achieve these guarantees for time-varying
systems not restricted to heavy traffic. Again, the setting accommodates changes in behavior as far
as the load criticality is concerned, and the optimality guarantees are not sensitive to that. To the
best of our knowledge, these are the first to address o(n1/2) optimality guarantees for time-varying
systems. The only paper the authors are aware of, that establishes AO in time-varying queues, is
[19]. In this paper, a large family of queueing systems with a fixed number of stations and routing
dynamics is studied. AO is considered and proved there in the fluid scale, and thus the optimality
guarantees provided are o(n).

Another set of results implied by the SDDP is obtained by simply specializing to the heavy traffic
setting. In heavy traffic, SSC is obtained, as well as convergence of the diffusion-scale queue length
(workload in the case of R(d)/LW(d)). For heterogeneous servers, the only paper the authors are
aware of, proving SSC, is the aforementioned paper [18]. However, the conditions under which SSC
holds under [18] and under our results are distinct, and it is not clear whether one set of conditions
contains the other.

The seminal papers by Bramson [11] and Williams [69] have played a pivotal role in the area by
setting the ground for a large number of results on SSC of various queueing models. However, their
methodology is restricted to critically loaded systems, and is not valid for time-varying queues of
the kind treated in this paper. Thus our results do not rely on this set of techniques, and use in
fact quite different methods.

1.1 Prior work

1.1.1 Time-varying queues

Many real-life queueing systems have time-varying characteristics. This has been recognized in call
center queueing systems [15] and in data center traffic studies [37]. In wireless networks, multiple
users transmit data on a shared channel, the capacity of which varies with time randomly and
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asynchronously for different users [3], [62].
Time-varying queueing systems have been thoroughly analyzed. These systems may be non-

stationary, operate for a fixed period of time, and may encounter light, heavy or overloading traffic
during their operation (see [19] and references therein). Work reported in [50], [51] and [52] provided
a heuristic analysis of transportation systems. In [38], a method to approximate the transient dis-
tribution of the queue length process was developed, using the stationary measure of an appropriate
Markov chain. It became known as the point-wise stationary approximation. This approach was
later justified in [46], [47] and [48], using a technique called uniform acceleration as an asymptotic
expansion of the transient distribution. The authors of [45] considered the time-varying Mt/Mt/1
queue and developed fluid and diffusion limit theorems using strong approximation methods. The
limiting queue length approximating process is characterized via a directional derivative of the Sko-
rohod map, as the system moves through under-, over- and critically-loaded regimes. For further
results in this direction, and analysis of more complicated systems, see [3], [31], [42], [44], and [68].
Recent work in [33] and [34] considered transitory queueing systems that operate for a finite period
of time or for a finite number of arriving users, and provided fluid and diffusion limit results using
population acceleration techniques.

1.1.2 Load balancing policies

SQ(d) has attracted a considerable amount of attention in recent years. We mention several related
results and refer the reader to [9], [18], and references therein. In an asymptotic regime corresponding
to N →∞ and sub-critical load, some randomized schemes (e.g., SQ(d)) are well known to result in
dramatic improvement of resource sharing, as expressed by the fact that the equilibrium tail decay
rate is doubly exponential under load-balancing whereas this rate is only exponential otherwise (see
[64] and the recent developments in [12], and references therein). SQ(d) has recently been considered
under a heavy traffic regime in [24], in a setting where N →∞. In that, it is similar to the setting
of [64]. Their main result is the scaling limit description of queue lengths in terms of a deterministic
infinite system of equations. For a fixed number of homogeneous servers, the authors of [32] analyze
a policy related to but distinct from SQ(d) in heavy traffic. Specifically, with a fixed probability,
jobs are routed to a queue chosen uniformly at random, and otherwise, to the shorter among two
neighboring queues, where the pair is again chosen uniformly at random. It is shown that the heavy
traffic limit is identical to that attained under SQ(d) with d = N .

LQF has been studied mainly in the context of switch scheduling and wireless communications.
Existing work is concerned with stability (e.g., [6], [43], [55], and [65]) and performance analysis
(e.g., [5], [7], [40], [41], [61] and [71]). To the best of our knowledge, LQF was not analyzed at the
diffusion scale.

Our original motivation for studying load balancing stemmed from our interest in redundancy
routing and its recent technological uses. We provide a more detailed review on R(d) since the
literature concerned with its analytical analysis is relatively scarce. In recent years there has been
an extensive use of large-scale systems such as data centers to provide end-users low latency of
response to requests. Low latency corresponds to the high quality of users’ experience, which in
turn affects company revenue ([13], [60]). To achieve low response time, computations, or requests,
are broken down into sub-computations, or jobs, which run in parallel on different servers. The
outcomes are then added up to form a response to the request. An example of an implementation
of this paradigm is MapReduce [21], where the map phase corresponds to the breaking down to
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sub-computations and the reduce phase to the collection of the results. In the queueing literature,
models in which a response is formed when all jobs complete are referred to as fork-join networks
[54].

The slowest job, referred to in the literature as an outlier or straggler, determines the overall
response time. This type of behavior may cause substantial problems in large-scale systems ([2],
[66], [70], [72]), because the more jobs are computed in parallel, the greater the probability that one
of them is slow. R(d) is often used to address this issue as follows. In addition to having requests
broken down into jobs, every job is replicated into several identical tasks that are routed to distinct
servers. The job is completed when the first of its tasks is finished being processed. In different
versions of this model, replicas can be canceled at any time, or not at all. This method is discussed
in [20], implemented in sophisticated schedulers in parallel computing systems, and is reported to
greatly reduce the effect of stragglers in [1], [2] and [72]. The intuition behind the efficiency of R(d)
is that jobs that wait for their turn in several queues simultaneously have a higher probability of
completing faster. The tradeoff lies in wasted capacity (in models where replicas are not canceled,
or where cancellation is delayed) and in the possible overhead incurred by performing cancellations
and keeping track of jobs and their replicas. The idea of redundancy can be applied to a large
variety of networks, not only ones that model data centers, and seems to be significant to explore
in a broader context.

There is a substantial body of research on redundancy routing in the context of application-
specific, sophisticated schedulers, and simulation-based performance analysis ([2], [53]). As for
theoretical analysis is concerned, few results exist (note that redundancy is different from fork-join
networks and from networks with flexible servers; see [29] for a thorough comparison). The main
concern in the existing literature is the effect of redundancy on the mean delay of jobs in various
queueing models ([10], [35], [39], [58], [59], [63]). Other papers study the tradeoff between latency
and resource usage when scheduling a fixed number of tasks ([36]). In [29], for a queueing model
where classes of costumers may choose whether to use redundancy, the limiting distribution of the
state of the queueing system is found, as well as that of the delay. The paper analyzes the effect of
redundant classes on non redundant classes, and empirically compares redundancy to other choices
that may reduce delay, such as SQ(d). The authors of [28] study several implications of relaxing the
common assumption that the processing times of replicas of the same job in different servers are
independent. In [30], exact expressions are derived for the mean delay of jobs when redundancy is
used for a fixed number of servers, as well as expressions for the delay distribution as the number
of servers goes to infinity. It is shown that the largest marginal benefit from using redundancy is
obtained when replicating each job twice as opposed to not replicating at all.

The cancellation mechanism in the R(d) model is such that replicas of a job are canceled when
the first begins processing, as opposed to cancelling after the first task is completed, which is more
often found in the literature ([29], [35], [36], [39]). The motivation for working with the former is
that cancelling a task while it is being processed may incur intolerable delay or overhead, and is
often impossible in practice. Another consideration is that under the former option no capacity is
wasted on tasks that are to be canceled.

1.2 Organization and notation

The organization of this paper is as follows. This section concludes with the introduction of some
notation that is used in the sequel. In §2 the models are described and the main results are stated,
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Figure 1: Basic structure of the queueing model for SQ(d), LW(d) and R(d) (left) and for LQF (right).

where §2.1, §2.2 and §2.3, respectively, are devoted to SQ(d), R(d)/LW(d) and LQF. The proofs,
which appear in §3, are provided, respectively, in §3.1, §3.2 and §3.3.

Notation. For a, b ∈ R, the maximum (resp., minimum) is denoted by a ∨ b (resp., a ∧ b), and
a+ = a ∨ 0, a− = (−a) ∨ 0. For x ∈ Rk (k a positive integer), ‖x‖ denotes the `1 norm. Denote
R+ = [0,∞), and for f : R+ → Rk, ‖f‖T = supt∈[0,T ] ‖f(t)‖, and, for θ > 0,

wT (f, θ) = sup
0≤s<u≤s+θ≤T

‖fu − fs‖. (1)

For a Polish space S, let CS [0, T ] and DS [0, T ] denote the set of continuous and, respectively, cadlag
functions [0, T ]→ S. Write CS and DS for the case where [0, T ] is replaced by R+. Endow DS with
the Skorohod J1 topology. Write Xn ⇒ X for convergence in distribution.

A sequence of processes Xn with sample paths in DS is said to be C-tight if it is tight and every
subsequential limit has, with probability 1, sample paths in CS . For m ∈ R and σ ∈ R, an (m,σ2)-
Brownian motion (BM) is a 1-dimensional BM starting from zero, having drift m and infinitesimal
covariance σ2. The Skorohod map Γ from D(R+ : R) to itself is defined by

Γ [φ](t) = φt − inf
s≤t

(φs ∧ 0), t ≥ 0.

If {βt} is an (m,σ2)-BM for some m ∈ R and σ ∈ (0,∞), then the process {β0
t } defined by the

pathwise transformation β0 = Γ [β] is referred to as an (m,σ2)-reflecting Brownian motion (RBM).
Given a time interval J = [t1, t2] ⊂ R+ we write f [t1, t2] = f [J ] = f(t2)−f(t1), for any function

f defined on R+. We use shorthand notation for integration as follows: If(t) =
∫ t

0 f(u)du.

2 Models and results

2.1 Results on SQ(d)

2.1.1 Model and scaling

We begin by describing the SQ(d) model and the scaling under consideration. A sequence of models
indexed by n ∈ N is defined on a probability space (Ω,F ,P) as follows. A fixed number N ∈ N
(N > 1) of servers, labeled by {1, . . . , N}, have infinite sized buffers, one dedicated to each server.
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Each server is non-idling and offers service on a first-come-first-served basis. There is a single stream
of arriving jobs. The kth job to arrive (after time zero) is referred to as job k. For simplicity, we
assume that the system starts empty. The stream is modeled by an inhomogeneous Poisson process
of rate λn(·), where λn is a deterministic, Borel measurable, locally integrable function R+ → R+.
To this end, a rate-1 Poisson process A is given, and the arrival counting process An is defined via
the relation

An(t) = A
(∫ t

0
λn(s)ds

)
, t ≥ 0. (2)

For i ∈ {1, . . . , N}, let {Ti(l) : l ∈ N} be a sequence of strictly positive i.i.d. RVs with mean 1
and variance 0 < VTi(1) < ∞. It is assumed that the size of the kth job served by server i is given
by Tni (k); that is, if that server works at constant rate µni then it takes Tni (k) := Ti(k)/µni units
of time to process. However, our model will allow for the rates of service to vary over time. To
this end, let {Si} be independent rate-1 renewal processes with inter-event times given by {Ti(k)},
namely

Si(t) = sup
{
l ≥ 0 :

l∑
k=1

Ti(k) ≤ t
}
. (3)

Let deterministic, Borel measurable, locally integrable functions µni , i = 1, . . . , N be given. Server i
works at rate µni (t) at the time when it has been busy for t units of time. Thus the potential service
process is given by

Sni (t) = Si

(∫ t

0
µni (s)ds

)
, t ≥ 0, (4)

namely, Sni (t) is the number of job departures from queue i by the time the corresponding server
has been busy for t units of time. The N + 1 processes {Ti} and A are assumed to be mutually
independent.

Denote by Ini (t) the cumulative idle time of server i at time t. Next, Ani and Dn
i are counting

processes for arrivals into buffer i, and departures from buffer i, respectively. Let Qni (t) denote the
queue length of the ith queue in the nth system at time t (this includes the job being processed at
that time, if there is one), and denote Qn = (Qn1 , . . . , Q

n
N ). The relations between the processes Ani ,

Sni , D
n
i , I

n
i and Qni are expressed by the following equations:

Dn
i (t) = Sni (t− Ini (t)) (5)

Qni (t) = Ani (t)−Dn
i (t), (6)

and the non-idling property ∫
[0,∞)

Qni (t)dIni (t) = 0. (7)

For integer 1 < d ≤ N , let Bd := {b ⊂ {1, ..., N}, |b| = d} be the set of all d-size subsets of
{1, ..., N}. Let {Bk} be an i.i.d. sequence of set valued random variables (RVs) distributed uniformly
over Bd. The subset Bk of the set of all servers {1, . . . , N} is associated with job k: it is used to
determine which buffer this job is to be sent to. Specifically, job k is routed to the buffer jk ∈ Bk
that contains the least number of jobs at the moment of its arrival. Ties are broken by prioritizing
buffer i over buffer j whenever 1 ≤ i < j ≤ N . Thus, if τnk denotes the time of arrival of the kth
job in the nth system, the job is routed to the buffer

jk = min{i ∈ Bk : Qni (τnk−) ≤ Qnj (τnk−) for all j}, (8)
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and the arrival processes Ani satisfy

Ani (t) =

An(t)∑
k=1

1{jk=i}. (9)

Given the primitivesA, {Ti} and {Bk}, equations (2)–(9) uniquely determine the processesAni , D
n
i , I

n
i

and Qni for i ∈ {1, . . . , N}. We thus use this set of equations as the rigorous definition of these
processes. We refer to this model as SQ(d).

2.1.2 SDDP result

In what follows, we provide a sufficient condition for SDDP. Essentially, SDDP holds if the input
rate difference between servers with short and long queues is enough to overcome their service rate
difference, thus pushing their queue lengths towards equalization. To state our condition, first, we
look at the maximal and minimal arrival and service rates during a time interval [0, T ]. To this end,
let scaled versions of λn and µni be given by

λ̄n(t) = n−1λn(t), µ̄ni (t) = n−1µni (t), t ≥ 0, (10)

and denote

λ̄min(T ) = inf
n

inf
t∈[0,T ]

λ̄n(t), λ̄max(T ) = sup
n

sup
t∈[0,T ]

λ̄n(t), (11)

µ̄min(T ) = min
i

inf
n

inf
t∈[0,T ]

µ̄ni (t), µ̄max(T ) = max
i

sup
n

sup
t∈[0,T ]

µ̄ni (t). (12)

Second, the condition involves the fraction of the arrival stream a server receives depending on
its relative queue size. For the ith shortest queue, this fraction is given by

ϕi =

(
N−i
d−1

)(
N
d

) =

{
d
N
N−i
N−1 · · ·

N−i−(d−2)
N−(d−1) , if 1 ≤ i ≤ N − d+ 1,

0, if i > N − d+ 1.
(13)

Define

ϕ∗ = min
1≤i≤N−1


1

i

∑
j:1≤j≤i

ϕj

− ϕi+1

 . (14)

Our main result on the SQ(d) model establishes SDDP.

Theorem 2.1 (SQ(d) SDDP). Fix T and assume that λ̄max(T ) <∞ and µ̄max(T ) <∞. Assume,
moreover, that

µ̄max(T )− µ̄min(T ) < λ̄min(T )ϕ∗. (15)

Then, as n→∞,
n−1/2 max

1≤i,j≤N
‖Qni −Qnj ‖T → 0 in probability.
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In the special case where the service rates are constant over time and equal to each other, the
l.h.s. of (15) vanishes, and therefore this condition is clearly valid. In general, the l.h.s. of (15) may
be regarded as a measure of heterogeneity, namely the degree to which service rates vary with time
and across servers. The condition (15) specifies the maximal range of this quantity under which our
result is valid.

Note that we do not claim that this condition is necessary. Yet, it is interesting to examine how
it varies as one changes d and N . First, one may verify that ϕ∗ increases with d. Therefore our
sufficient condition allows for a greater degree of service-rate heterogeneity as d increases. Also, ϕ∗

decreases with N . Hence the aforementioned condition allows for a smaller degree of heterogeneity
with increasing N . The first observation supports the intuition that the policy achieves better
balance when the fraction of sampled queues increases. The second observation supports the same
intuitive claim, since when N is increased, the fraction of sampled queues, d/N , decreases.

Remark 2.2. Some simplified expressions for ϕ∗ are available for certain values of d:

ϕ∗ =


2

N(N−1) , if d = 2,
1

N−1 , if d = N − 1,

1, if d = N.

The following simple example addresses the well-known fact that SDDP need not always hold,
even under critical load.

Example 2.3. Let N = 3 and d = 2. Assume that the service and arrival rates do not vary in
time, and are given by λn(t) = λn and µni (t) = µin. Let µ1 = µ2 = 1, µ3 = 10 and λ = 12 (note
that the critical load condition holds). Then the shortest, mid-size and longest queues receive 2/3,
1/3 and 0 fraction of the incoming traffic, respectively. The fastest server processes at rate 10n,
i.e., more than the maximal possible input rate 2

312n = 8n. By standard tools one can show that
its diffusion-scale perturbations away from zero converge to zero. On the other hand, the remaining
two servers, whose total capacity is 2n, have to process jobs that arrive at rate 4n at least. Again, it
is easy to see that their diffusion-scale sum diverges. Thus the difference between Qni is of order n,
and therefore SDDP does not hold. We note that this example is related to questions of instability
that have been addressed in [27].

2.1.3 Applications to AO and SSC

Next we present an AO result that follows from Theorem 2.1. We specialize to the case of constant
service rates. The arrival rate however, may still vary with time. Recall that the service times Tni (k)
are given by Ti(k)/µni . We further assume that for different i the primitives Ti(k) have the same
distribution, i.e., the service times at the different stations can be obtained as accelerated versions
of a single i.i.d. sequence, where acceleration depends on the server.

To state the result we need to introduce the notion of nominal workload. Whereas the workload
at buffer i, denoted byWn

i (t) is, by definition, the time that server i takes to process all jobs present
in the buffer at that time, the nominal workload in this buffer is given by µniW

n
i (t). It represents

the time it takes a nominal server, i.e., a server that processes at rate 1, to complete this work. The
total nominal workload is defined as

Zn(t) =
∑
i

µniW
n
i (t). (16)
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We also need the notion of an arbitrary sequence of policies. Fix n. Consider the definition
of the model in §2.1 with the process jk (defined in (8)) replaced by an arbitrary process taking
values in {1, . . . , N} (still denoted by jk). Leave all other ingredients of the model as they are in
§2.1. We identify the term ‘policy’ with the routing process jk, and refer to the resulting processes
Ani , D

n
i , I

n
i , Q

n
i and Wn

i as the processes corresponding to this policy. Note that this is a very broad
definition of a policy, since it allows, for example, for the routing process jk to depend on future
events.

Proposition 2.4 (SQ(d) Asymptotic Optimality). Fix T , and let the hypotheses of Theorem 2.1
hold with constant service rates. Assume, moreover, that for different i the primitives Ti(k) have
the same distribution. Let an arbitrary sequence of policies be given, and denote by Z̃n(t) the
corresponding total nominal workload process. Keep the notation Zn(t) for SQ(d). Then there
exists a sequence of RVs δn (that does not depend on the given sequence of policies) converging to
zero in probability, such that, for all n and t ∈ [0, T ],

n−1/2Zn(t) ≤ n−1/2Z̃n(t) + δn.

Remark 2.5. The total nominal workload (16) is an interesting objective function to be optimized
since it is closely related to delay. The workload at a given buffer, k, at a given time, t, is the delay
that a new customer will experience if it joins queue k at time t. It is therefore natural to consider
as a performance measure a weighted sum of workload over all buffers. The result we present does
not address a weighted sum with arbitrary weights but the special case, that is still an interesting
one, where all weights equal 1, as is considered, for example, in [18].

Finally, we further specialize to the conventional heavy traffic setting. Thus the arrival and
service intensities do not vary with time, and we assume that there exist constants λ ∈ (0,∞),
λ̂ ∈ R, µi ∈ (0,∞) and µ̂i ∈ R, i ∈ {1, . . . , N}, such that

lim
n→∞

n−1/2(λn − nλ) = λ̂, (17)

lim
n→∞

n−1/2(µni − nµi) = µ̂i, i = 1, . . . , N. (18)

Moreover, a critical load condition is assumed. The first order terms in the n-scale arrival rate and
total processing rate are given by λ and

∑N
j=1 µj , respectively. Therefore, criticality corresponds to

λ =

N∑
i=1

µi. (19)

We denote µmax = maxi µi and µmin = mini µi. Denote the diffusion-scaled queue lengths by

Q̂ni = n−1/2Qni , i = 1, . . . , N, (20)

and denote Q̂n = (Q̂n1 , . . . , Q̂
n
N ). We will say that the queue lengths exhibit diffusive behavior if, for

each T , the sequence of RVs ‖Q̂n‖T is tight. It is clear that in the case d = 1 (which is excluded from
our analysis and corresponds to uniformly random routing of tasks), queue lengths are non-diffusive
under our assumptions. This is simply due to the fact that for the slowest server, λ/N > µmin
(except when the µi’s are all equal). As a result, ‖Qn‖T are of order n rather than

√
n. For d ≥ 2
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there may be a dramatic improvement in performance, in the sense that the queue lengths exhibit
diffusive behavior.

Denote µ̂0 = N−1(λ̂ −
∑

i µ̂i) and σ2
0 = N−2(λ +

∑N
i=1 µiVTi(1)). The next result shows SSC

and convergence.

Proposition 2.6 (SQ(d) in heavy traffic). Assume (17), (18), (19) hold and

µmax − µmin < λϕ∗. (21)

Let β0 be a (µ̂0, σ
2
0)-RBM. Then, as n→∞,

(Q̂n1 , Q̂
n
2 , . . . , Q̂

n
N )⇒ (β0, β0, . . . , β0).

A similar result in presence of server heterogeneity has been shown in [18] (in fact, for general
renewal arrivals). However, the condition (21) and the condition on the rates assumed in [18] are
distinct, and it is not clear if one of them implies the other.

2.2 Results on R(d) and LW(d)

2.2.1 Model and scaling

In the LW(d) model, for each of the arriving jobs, d servers are chosen uniformly at random and
every arriving job is sent to the server with the minimal amount of workload, defined as the time
it will take the server to finish all its existing work (to this end, it is assumed that workload in
the buffers is known to the decision maker). The precise setting is as follows. First, we keep some
elements of the model from §2.1, namely we consider a sequence of models indexed by n ∈ N,
with N > 1 non-idling servers with infinite size buffers. Service is given on a first-come-first-served
basis and we assume the system starts empty. The job arrival process is an inhomogeneous Poisson
process An with rate λn(·), as in (2), and the RVs Bk are as before. Also, jk denotes the server
chosen for job k, but when using the LW(d) policy.

The service requirements follow a slightly different structure. Unlike the treatment of the SQ(d)
model, here we assume that the service rates are constant. The reason for this assumption is that
when service rates vary with time, a routing scheme based on workload (that we have defined as the
time it will take the server to complete current assigned work) has to rely on calculations involving
future service rates of all servers, making the model equations and their analysis rather complex.
Thus we are given an i.i.d. sequence {T (k)} of real-valued, strictly positive RVs, with mean 1 and
variance 0 < VT (1) <∞. The service duration associated with job k, on the event that it is served
by server i, is then given by

Tni (k) = T (k)/µni , (22)

where µni is the constant mean service rate of server i. We assume the processes A, {T (k)} and
{Bk} are mutually independent.

Denote by Wn
i (t) the workload of server i at time t. To reiterate, it is defined as the time,

that it will take server i to finish its existing work at time t. Let Wn = (Wn
1 , . . . ,W

n
N ). Denote

by WA,n
i (t) the cumulative work that arrived to server i until time t, and let Ini (t) denote the

cumulative idle time. Then the relations between the processes An, Tn, Wn, WA,n and In are given

11



via the following equations:

Ini (t) =

∫ t

0
1{Wn

i (s)=0}ds, (23)

Wn
i (t) = WA,n

i (t)− (t− Ini (t)) = WA,n
i (t)−

∫ t

0
1{Wn

i (s)>0}ds, (24)

WA,n
i (t) =

An(t)∑
k=1

Tni (k)1{jk=i}. (25)

Job k is routed to the server jk ∈ Bk with the least amount of workload. Ties are broken by
prioritizing buffer i over buffer j whenever 1 ≤ i < j ≤ N . Thus, if τnk denotes the time of arrival
of the kth job in the nth system, the job is routed to the buffer

jk = min{i ∈ Bk : Wn
i (τnk−) ≤Wn

j (τnk−) for all j}, (26)

and the arrival processes Ani satisfy the relation given in (9), now with jk chosen according to (26).
Given the primitives An, {T (k)} and {Bk}, equations (22)–(26), together with (2) and (9), uniquely
define the unknowns Wn

i , W
A,n
i and Ini for i ∈ {1, . . . , N}. As in §2.1, we use the aforementioned

set of equations as a means of rigorously defining these processes.

2.2.2 R(d) and its equivalence to LW(d)

We now argue that the LW(d) policy, in which the decision maker is aware of the workload of the
servers, is mathematically equivalent to a policy based on redundancy and cancellations, where the
workload information is not available to the decision maker.

Recall that in the LW(d) model, when a job arrives, d servers are chosen uniformly at random
and the job joins the buffer corresponding to the server with the least amount of workload. In R(d),
instead of selecting one out of the d buffers, the job is replicated d times, and these replicas are sent
to the d (again, randomly chosen) buffers. When the first of the d replicas of a given job reaches a
server, it is accepted to service and all remaining replicas are canceled (removed from the system).
Ties are broken, as before, according to the ordering of the buffers. Note that this policy does not
use any information on the workload. The times a job begins and completes service are defined as
the corresponding times for the replica that makes it to the server.

We argue that R(d) is equivalent to LW(d). More precisely,

Proposition 2.7. If the same stochastic primitives are used under both policies then, for each job,
the buffer selected by LW(d) is the same as the buffer containing the replica that eventually makes
it to a server under R(d).

It is an immediate consequence of this claim that each job starts and completes service at the
same time under both policies. The proof appears in §3.2.

An intuitive explanation is as follows. In terms of workload, only the replica that will not
be canceled adds work to the server it joined. The workloads of the other d − 1 servers remain
unchanged. Interestingly, the replica that eventually receives service (i.e., reaches a server first)
is the one that joined the buffer corresponding to the server with the least amount of workload.
Essentially, R(d) is a method of implementing LW(d) without observing the workload.

We proceed with presenting the LW(d) model. By the equivalence discussed above, all subse-
quent results on LW(d) apply to R(d) as well.
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2.2.3 SDDP result and its applications

Let λ̄min(T ) and λ̄max(T ) be defined as in (11). Let µni satisfy (18) for some constants µi ∈ (0,∞)
and µ̂i ∈ R. Let µmax = maxi µi and µmin = mini µi. Our main result on LW(d) (equivalently,
R(d)) is the following.

Theorem 2.8 (R(d)/LW(d) SDDP). Fix T . Assume that λ̄min(T ) > 0 and λ̄max(T ) <∞. Assume
moreover that

µmax
µmin

<
N − 1

N − d
. (27)

Then, as n→∞,
n1/2 max

1≤i,j≤N
‖Wn

i −Wn
j ‖T → 0 in probability.

As in the case of SQ(d), the above result implies AO at sub-diffusive scale. Recall the definition
(16) of the total nominal workload, Zn(t). The definition of an arbitrary policy is analogous to the
one given before Proposition 2.4.

Proposition 2.9 (R(d)/LW(d) Asymptotic Optimality). Fix T > 0, and let the hypotheses of The-
orem 2.8 hold. Let an arbitrary sequence of policies be given, and denote by Z̃n(t) the corresponding
total nominal workload process. Keep the notation Zn(t) for LW(d). Then there exists a sequence
of RVs δn (that does not depend on the given sequence of policies) converging to zero in probability,
such that, for all n, t ∈ [0, T ] and ω ∈ Ω,

n−1/2Zn(t) ≤ n−1/2Z̃n(t) + δn.

Once again, we examine our main result under the conventional heavy traffic assumptions.
Denote Ŵn = n1/2Wn. Assume that the constant rates λn and µni satisfy (17), (18) and (19).

Proposition 2.10 (R(d)/LW(d) in heavy traffic). Assume that (27) holds. Let β0 be a (µw, σ
2
w)-

RBM, where µw = Nµ̂0λ
−1 and σ2

w = (VT (1) + 1)λ−1. Then, as n→∞,

(Ŵn
1 , Ŵ

n
2 , . . . , Ŵ

n
N )⇒ (β0, β0, . . . , β0).

The heuristic by which SSC implies diffusive behavior is as in the previous subsection, and in
fact the proof of Proposition 2.10 based on Theorem 2.8 is similar to that of Proposition 2.6 based on
Theorem 2.1. On the other hand, as far as the SDDP (and specifically SSC) results are concerned,
we use a different argument for SQ(d) and LW(d), and this results in different sufficient conditions.
Neither of the conditions (15) and (27) is stronger than the other. For example, one can check that
for (N, d, µ) = (4, 3, (1, 1, 2, 3)), the condition (15) for SSC under SQ(d) holds while the condition
(27) for LW(d) does not. On the other hand, for (N, d, µ) = (5, 4, (5, 5, 6, 7, 19)), (15) does not hold
while (27) does. An interesting question left open is to find necessary and sufficient conditions for
SSC under SQ(d) or LW(d).

2.3 Results on LQF

2.3.1 Model and scaling

Consider a single server that processes jobs belonging to N classes, where each class has a dedicated
infinite capacity buffer in which a queue can form. The stream of arriving jobs into each buffer is

13



modeled by a modulated renewal process. To this end, for i ∈ {1, . . . , N}, let {Ei(l) : l ∈ N} be
a sequence of strictly positive i.i.d. RVs with mean 1 and variance 0 < VEi(1) < ∞. Let {Ai} be
renewal processes with inter-event times given by Ei(k), namely

Ai(t) = sup
{
l ≥ 0 :

l∑
k=1

Ei(k) ≤ t
}
. (28)

The arrival counting processes {Ani } are assumed to be given by

Ani (t) = Ai

(∫ t

0
λni (s)ds

)
, t ≥ 0, (29)

where {λni } are deterministic functions.
For i ∈ {1, . . . , N}, let {Ti(l) : l ∈ N} be a sequence of strictly positive i.i.d. RVs with mean 1

and variance 0 < VTi(1) <∞. Let {Si} be renewal processes with inter-event times given by Ti(k),
namely

Si(t) = sup
{
l ≥ 0 :

l∑
k=1

Ti(k) ≤ t
}
. (30)

It is assumed that the size of the kth job of class i in the nth system is given by Tni (k); that is, if
the server works at constant rate µni then it takes Tni (k) := Ti(k)/µni units of time to process. As in
the SQ(d) model, we assume that the rates of service may vary over time. To this end, it is assumed
that deterministic functions µni (·), i = 1, . . . , N , are given. The server works at rate µni (t) at the
time that it has been busy with class i for t units of time. Thus the potential service processes are
given by

Sni (t) = Si

(∫ t

0
µni (s)ds

)
, t ≥ 0. (31)

The 2N processes {Ei} and {Ti} are assumed to be mutually independent.
Let Qni (t) denote the queue length in the ith buffer in the nth system at time t (including the

class-i job being processed at that time, if there is one). Let Qn = (Qn1 , . . . , Q
n
N ) denote the queue

length process. Denote by Ani (t) and Dn
i (t) the counting processes corresponding to arrivals and

departures respectively, from buffer i until time t. Denote by Bn
i (t) the cumulative amount of time

the server has served class-i jobs until time t. Assuming as before that the system is initially empty,
the relations between these processes are given by

Qni (t) = Ani (t)−Dn
i (t), (32)

Dn
i (t) = Sni (Bn

i (t)). (33)

The policy acts as follows. When there are jobs in the system, the job at the head of the line of the
class with the longest queue receives service. Thus, within each class, service is given by the order
of arrival, and the policy is non-idling and preemptive. The server resumes working on a previously
preempted job from where it has left off. Let LQn(t) denote the label of the class with the longest
queue at time t, where ties are broken by prioritizing lower indexes. Then

LQn(t) = min{i ∈ {1, . . . , N} : Qni (t−) ≥ Qnj (t−) for all j}, (34)

Bn
i (t) =

∫ t

0
1{LQn(s)=i,Qn

i (s)>0}ds. (35)
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Given the primitive processes {Ei} and {Ti}, equations (28)–(35) uniquely determine the processes
Ai, Di, Qi and Bi for i ∈ {1, . . . , N}. We refer to this model as LQF.

2.3.2 SDDP result and its applications

Scaled versions of λni and µni are given by

λ̄ni (t) = n−1λni (t), µ̄ni (t) = n−1µni (t), t ≥ 0. (36)

Denote

λ̄min(T ) = min
i

inf
n

inf
t∈[0,T ]

λ̄ni (t), λ̄max(T ) = max
i

sup
n

sup
t∈[0,T ]

λ̄ni (t), (37)

µ̄min(T ) = min
i

inf
n

inf
t∈[0,T ]

µ̄ni (t), µ̄max(T ) = max
i

sup
n

sup
t∈[0,T ]

µ̄ni (t). (38)

Theorem 2.11 (LQF SDDP). Fix T and assume that λ̄max(T ) < ∞ and µ̄max(T ) < ∞. Assume
moreover that

λ̄max(T )− λ̄min(T ) < N−1µ̄min(T ). (39)

Then, as n→∞,
n−1/2 max

1≤i,j≤N
‖Qni −Qnj ‖T → 0 in probability.

To state a consequence regarding the conventional heavy traffic setting, assume λni (t) = λni and
µni (t) = µni . Assume moreover there exist parameters λi, λ̂i that satisfy

lim
n→∞

n−1/2(λni − nλi) = λ̂i, (40)

and µi, µ̂i that satisfy (18). Assume the critical loading condition∑
i

λiµi
−1 = 1. (41)

Denote cl = (
∑

i µi
−1)−1, µl = cl

∑
i(λ̂iµi

−1 − λiµ̂iµi−2) and σ2
l = cl

2
∑

i λiµ
−2
i (VEi(1) + VTi(1)).

The next result shows SSC and convergence.

Proposition 2.12 (LQF in heavy traffic). Assume (40), (18) and (41) hold, and

λmax − λmin < N−1µmin. (42)

Let β0 be a (µl, σ
2
l )-RBM. Then, as n→∞,

(Q̂n1 , Q̂
n
2 , . . . , Q̂

n
N )⇒ (β0, β0, . . . , β0).
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3 Proofs

3.1 Proofs for SQ(d)

In this subsection we analyze the SQ(d) model and prove Theorem 2.1 and Proposition 2.6. The
proof of Proposition 2.4 is based on that of Proposition 2.9, and is therefore deferred to the next
section.

We begin by introducing some notation used in the proof. Centered and scaled versions of the
primitive processes A and Si are given by

Ân(t) = n−1/2(A(nt)− nt), Ŝni (t) = n−1/2(Si(nt)− nt). (43)

These processes jointly converge to mutually independent BMs with zero drift and infinitesimal
variance 1 and µiVTi(1), respectively (see §17 of [8]). Recalling from section 1.2 the notation I for
integration, by (2) and (4), the processes An and Sni are given as An = A ◦ Iλn and Sni = Si ◦ Iµni ,
respectively. Therefore

n−1/2(An(t)− Iλn(t)) = n−1/2(A(nIλ̄n(t))− nIλ̄n(t)) = (Ân ◦ Iλ̄n)(t), (44)

and
n−1/2(Sni (t)− Iµni (t)) = (Ŝni ◦ Iµ̄ni )(t), (45)

where λ̄n(t) and µ̄ni (t) are defined in (10).
Given n and t, let l(t) = ln(t) denote the unique permutation of {1, . . . , N} for which

Qnl1(t)(t) ≤ Q
n
l2(t)(t) ≤ · · · ≤ Q

n
lN (t)(t),

and whenever Qni (t) = Qnj (t) and i < j, one has li(t) < lj(t). The inverse permutation is denoted
by L(t) = (L1(t), . . . , LN (t)). For example, if N = 4, and Qn(t) = (9, 7, 8, 7), then l(t) = (2, 4, 3, 1)
and L(t) = (4, 1, 3, 2). In addition, for any vector v ∈ RN we use the notation v(i) for the ith
smallest coordinate of v, counting multiplicity. That is, {v(i)} satisfy

v(1) ≤ · · · ≤ v(N),

such that for each i ∈ {1, . . . , N}, v(i) = vj for exactly one j. In particular, one hasQnli(t)(t) = Qn(i)(t)

and Qn(Li(t))
(t) = Qni (t).

By thinning of (modulated) Poisson processes [23], the input stream of jobs to the buffers,
ordered according to the queue sizes, form N independent (modulated) Poisson processes, with
time-dependent rates given by

Λni (t) = λn(t)

(
N−i
d−1

)(
N
d

) = λn(t)ϕi. (46)

Specifically, the shortest queue arrival intensity is Λn1 (t), whereas the d − 1 longest queues do not
receive any arrivals (by (13), ϕi = 0 for i ∈ {N − d, . . . , N}). The intensity of arrivals into queue i
is thus given by the stochastic process

λni (t) := ΛnLi(t)
(t) = λn(t)ϕLi(t). (47)
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We express this by stating that given any fixed subset S ⊂ {1, . . . , N}, there exists a standard
Poisson process π such that ∑

i∈S
Ani (t) = π

(∫ t

0

∑
i∈S

λni (s)ds
)
. (48)

Proof of Theorem 2.1. The crux of the argument is to identify and analyze, for given T and
ε, an event containing the event {maxi,j ‖Q̂ni − Q̂nj ‖T > ε}, whose probability can be estimated
effectively. In doing so, the C-tightness of the rescaled processes Ân and Ŝni (which follows from
their convergence to BMs) plays a key role.

For T > 0 and ε > 0, denote

τ := τn = inf
{
t : there exists i < N such that sup

t≤T

[
Q̂n(i+1)(t)− Q̂

n
(i)(t)

]
> ε4i

}
. (49)

If for some T > 0 and ε′ > 0,
{max
i,j
‖Q̂ni − Q̂nj ‖T > ε′} (50)

holds, then there exists t ≤ T for which Q̂n(N)(t)− Q̂
n
(1)(t) > ε′, and consequently, there exists i < N

for which
Q̂n(i+1)(t)− Q̂

n
(i)(t) > (N − 1)−1ε′.

Thus if we let ε = 4−N (N − 1)−1ε′ then τ ≤ T also holds on the event (50), and consequently,
for any T ′ > T , τ < T ′ holds on this event. As a result, in order to show that, as n → ∞,
P({maxi,j ‖Q̂ni − Q̂nj ‖T > ε) → 0 for arbitrary T and ε, it suffices to prove that P(τ < T ) → 0 for
arbitrary T and ε.

Fixing T and ε, we analyze the event {τ < T}. The processes were constructed in such a way
that Q̂n have right-continuous sample paths. Therefore, on the event {τ < T} there exists i < N
such that Q̂n(i+1)(τ)− Q̂n(i)(τ) > ε4i. Fix such i. Because Q̂n(0) = 0, there exist times t earlier than
τ when Q̂n(i+1)(t)− Q̂

n
(i)(t) ≤ ε4

i−1. Let then

σ := σn = sup{t < τ : Q̂n(i+1)(t)− Q̂
n
(i)(t) ≤ ε4

i−1},

and set J = [σ, τ ]. Note that the processes Qn(t) can only jump by 1, therefore by (20), the jumps
of the processes Q̂ni are all of size n−1/2. Assume that n is sufficiently large so that these jumps are
of size smaller than ε/2. Since τ and σ are defined in such a way that Q̂n(i) and Q̂

n
(i+1) are kept apart

throughout the interval J at a distance greater than twice the size of the jumps, it follows that the
collection of indices of the i shortest queues does not vary over that time interval (however, the
ordering within this collection may change). That is, the setM(t) := {l1(t), . . . , li(t)} remains fixed
for all t ∈ [σ, τ ]. We denote this set by M . Let also m = li+1(σ). We shall focus on the evolution
of the queues Q̂nj , j ∈ M and on the queue Q̂nm, over the time interval J . Figure 2 illustrates our
construction.

First, note that m is not a member of M , and because M(t) does not vary with t during J , it
is not a member of M(τ). Hence

Q̂nm(τ) ≥ Q̂n(i+1)(τ) ≥ Q̂n(i)(τ) + ε4i.
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Figure 2: Illustration of the construction for SQ(d). The circles represent the scaled queue lengths in the
buffers. The white (gray) circle corresponds to the ith (i+ 1) smallest scaled queue length at time σn. The
set M of i smallest queue lengths does not change during the interval.

Therefore, if Q̂nM (t) = i−1
∑

j∈M Q̂nj (t) denotes the arithmetic mean over the set M ,

Q̂nm(τ) ≥ Q̂nM (τ) + ε4i. (51)

By the definition of σ and the bound on the jump sizes,

Q̂nm(σ)− Q̂n(i)(σ) ≤ ε4i−1 + ε.

Since σ < τ , it follows from the definition of τ that Q̂n(i)(σ) − Q̂n(1)(σ) ≤ ε(4 + 42 + · · · + 4i−1)

= ε(4i − 4)/3. Thus

Q̂nm(σ)− Q̂nM (σ) ≤ Q̂nm(σ)− Q̂n(1)(σ) ≤ ε(4i−1 + 1 + 4i/3− 4/3) < ε
7

12
4i. (52)

Combining (51) and (52), multiplying by n1/2 and recalling from section 1.2 our notation f [J ] for
f(t2)− f(t1) where J = [t1, t2], we obtain

n1/2ε ≤ Qnm[J ]−QnM [J ]. (53)

The quantity i, the index m and the set M are all random. Appealing to the union bound, we
have

P(τ < T ) ≤
N−1∑
i0=1

N∑
m0=1

∑
M0:|M0|=i0

P(Ωn(i0,m0,M0)), where

Ωn(i0,m0,M0) =
{
there exist s, t ∈ [0, T ], s < t, such that n1/2ε ≤ Qnm0

[s, t]−QnM0
[s, t],

and Qnm0
(u) > Qn(i0)(u) ≥ Qnj (u) for all j ∈M0, u ∈ [s, t]

}
. (54)
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To prove the result, it thus suffices to show that each summand P(Ωn(i0,m0,M0)) converges to zero
with n. We focus on fixed, deterministic i0, m0 and M0, and, with a slight abuse of notation, refer
to them again as i, m and M . We also write J for the corresponding time interval [s, t], and Ωn for
Ωn(i,m,M).

On the event Ωn, using (6), we have

Qnm[J ]−QnM [J ] = Anm[J ]−Dn
m[J ]−AnM [J ] +Dn

M [J ], (55)

where XM = i−1
∑

j∈M Xj for X = Qn, An and Dn. On this event, server m is non-idling during
[s, t]. Therefore, if we denote for j ∈ {1, . . . , N}, Jj = [s−Inj (s), t−Inj (s)], we haveDn

m[J ] = Snm[Jm].
Servers j ∈ M need not be non-idling (may idle) during this time window, but since Snj has non-
decreasing sample paths, we still have a valid inequality. Namely, we have by (5) thatDn

j [J ] ≤ Snj [Jj ]
for j ∈M . Hence by (54) and (55),

n1/2ε ≤ Anm[J ]− Snm[Jm]−AnM [J ] + i−1
∑
j∈M

Snj [Jj ]. (56)

We appeal to (48) twice: with S = {m} and with S = M . We emphasize that m and M are
now deterministic. Thus there exist standard Poisson processes π1 and π2 such that

Anm(u) = π1(nfn1 (u)), fn1 (u) =

∫ u

0

ΛnLm(v)(v)

n
dv =

∫ u

0
λ̄n(v)ϕLm(v)dv,

where identities (10) and (47) are used, and, denoting Λn{1,i}(u) =
∑

j≤i Λ
n
j (u) and ϕ{1,i} =

∑
j≤i ϕj ,

AnM (u) = i−1π2(nfn2 (u)), fn2 (u) =

∫ u

0

Λn{1,i}(v)

n
dv =

∫ u

0
λ̄n(v)dv ϕ{1,i},

where we used the fact that M is equal to the set {1, . . . , i}. Thus if we let

π̂nk (u) = n−1/2(πk(nu)− nu), k = 1, 2, (57)

then dividing by n1/2 in (56), appealing to (45), gives

ε ≤ π̂n1 ◦ fn1 [J ]− Ŝnm ◦ Iµ̄nm[Jm]− i−1π̂n2 ◦ fn2 [J ] + i−1
∑
j∈M

Ŝnj ◦ Iµ̄nj [Jj ] + Y n, (58)

where
Y n = n1/2

{
fn1 [J ]− i−1fn2 [J ]−

∫
Jm

µ̄nm(u)du+ i−1
∑
j∈M

∫
Jj

µ̄nj (u)du
}
. (59)

For a bound on Y n, note that for v ∈ J , ϕLm(v) ≤ ϕi+1, hence

fn1 [J ]− i−1fn2 [J ] ≤ (ϕi+1 − i−1ϕ{1,i})

∫
J
λ̄n(v)dv = −ϕ∗

∫
J
λ̄n(v)dv ≤ −ϕ∗ inf

u∈[0,T ]
λ̄n(u)(t− s).

Moreover, using |Jm| = t− s and |Jj | ≤ t− s, j ∈M ,

−
∫
Jm

µ̄nm(u)du+ i−1
∑
j∈M

∫
Jj

µ̄nj (u)du ≤
[

max
k≤N

sup
u∈[0,T ]

µ̄nk(u)−min
k≤N

inf
u∈[0,T ]

µ̄nk(u)
]
(t− s).
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Hence by (15), for some ε0 > 0, Y n ≤ −ε0n
1/2(t − s) on the event Ωn. As a result, using the

notation in (1), on the same event we have

ε ≤
2∑

k=1

wT (π̂nk ◦ fnk , t− s) +

N∑
j=1

wT (Ŝnj ◦ Iµ̄nj , t− s)− ε0n
1/2(t− s). (60)

Fix a sequence {rn} such that rn → 0 and n1/2rn → ∞. Considering the two cases t − s ≤ rn
and t− s > rn, it follows from (60) that P(Ωn) ≤ pn1 + pn2 , where

pn1 = P
( 2∑
k=1

wT (π̂nk ◦ fnk , rn) +

N∑
j=1

wT (Ŝnj ◦ Iµ̄nj , rn) ≥ ε
)
,

pn2 = P
(

2
2∑

k=1

‖π̂nk ◦ fnk ‖T + 2

N∑
j=1

‖Ŝnj ◦ Iµ̄nj ‖T ≥ ε0n
1/2rn

)
.

The processes π̂nk and Ŝnj are C-tight, as processes that converge to BM. Moreover, by the definition
of fnk and the assumed uniform bound on λ̄n(t), there exists a deterministic constant c1 (independent
of n) such that fnk are bounded by c1 on the time interval [0, T ], as well as c1-Lipschitz on it. By
the assumed uniform bound on µ̄ni (t), a similar assertion holds for the processes Iµ̄ni . It follows that
π̂nk ◦ fnk and Ŝnj ◦ Iµ̄nj are also C-tight. As a result, both pn1 and pn2 converge to zero. This shows
that P(Ωn(i,m,M))→ 0 for every i,m,M , and therefore by (54) completes the proof.

Proof of Proposition 2.6. Let QnS =
∑N

i=1Q
n
i and Q̂nS = n−1/2QnS denote the sum and normalized

sum of queue lengths. It follows from Theorem 2.1 that SSC holds, i.e.,

Q̂ni −N−1Q̂nS ⇒ 0, (61)

as n→∞, for every i. Hence it suffices to show that Q̂nS ⇒ Nβ0.
To this end, we use relations (20), (5), (6) and (43), with which we can write the balance equation

Q̂nS = X̂n + Ŷ n, where, denoting λ̄n = n−1λn and µ̄ni = n−1µni ,

X̂n(t) = Ân(λ̄nt)−
N∑
i=1

Ŝni (µ̄ni (t− Ini (t))) + vnt, Ŷ n = n−1/2
N∑
i=1

µni I
n
i (t), (62)

vn = n−1/2
(
λn −

N∑
i=1

µni

)
. (63)

By (17), (18) and (19), vn → Nµ̂0 = λ̂−
∑

i µ̂i.
Next, we identify a sequence of events whose probability converges to 1 by virtue of the SSC,

on which Q̂nS is given, up to a small error term, as the image of X̂n under the Skorohod map. Fix
T > 0. It follows from (61) that for every ε > 0, P(Ωn,ε)→ 1 as n→∞, where

Ωn,ε = {for all t ∈ [0, T ], Q̂nS(t) > ε implies min
i
Q̂ni (t) > 0}. (64)
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As a result, there exists a sequence εn → 0, εn > 0, such that P(Ωn,εn)→ 1 as n→∞. Fix such a
sequence. Denote Ωn = Ωn,εn . Define

Q̃nS = (Q̂nS − εn)+, en = Q̃nS − Q̂nS . (65)

Note that ‖en‖T ≤ εn. Now, by (7),
∫
Qni (t)dIni (t) = 0 for all i. Moreover, Q̃nS(t) > 0 if and only

if Q̂nS(t) > εn. As a result, on the event Ωn, we also have
∫
Q̃nS(t)dIni (t) = 0 for all i, and therefore∫

Q̃n(t)dŶ n(t) = 0.
If we let X̃n = X̂n + en then the following relations hold on the event Ωn:

Ŷ n has continuous, nonnegative and nondecreasing sample paths,

Q̃nS is non negative,

Q̃nS = X̃n + Ŷ n,∫
Q̃n(t)dŶ n(t) = 0. (66)

These relations imply that, on the event Ωn, X̃n determines Q̃n in terms of the Skorohod map,
namely Q̃nS = Γ [X̃n

S ] (see [17], Ch. 6, p. 128).
Let us argue that the RVs ‖Ŷ n‖T are tight. We have on Ωn, Ŷ n(t) = Q̃nS(t) − X̃n(t) =

− infs≤t X̃
n(s) ∧ 0. Moreover, using (62) and letting c1 := supn[λ̄n ∨maxi µ̄

n
i ] <∞,

‖X̃n‖T ≤ ‖X̂n‖+ εn ≤ ‖Ân‖c1T +
∑
i

‖Ŝni ‖c1T + |vn|T.

Hence, by the weak convergence of Ân and Ŝni , the convergence of vn and the fact P(Ωn)→ 1, the
tightness of ‖Ŷ n‖T follows. As a result, noting the relation (62) of Ini to Ŷ n and recalling that µni
are asymptotic to µin, it follows that Ini ⇒ 0 for every i. Using this in the equation for X̂n in (62)
and, again, the convergence of Ân(λ̄n·)−

∑
Ŝni (µ̄ni ·) to a (0, σ2)-BM with σ2 = λ+

∑N
i=1 µiVTi(1), it

follows that X̂n ⇒ β, where β is an (Nµ̂0, σ
2)-BM. The continuous mapping theorem then applies

for Q̃nS , and in turn for Q̂nS , giving Q̂
n
S ⇒ Γ [β]. Thus N−1Q̂nS converges to a (µ̂0, σ

2
0)-RBM. This

completes the proof.

3.2 Proofs for R(d)/LW(d)

Here we prove Theorem 2.8 and then Propositions 2.9, 2.10 and 2.7. The proof of Proposition 2.4
is based on that of Proposition 2.9, and is also presented in this section. As far as Theorem 2.8 is
concerned, there are similarities to the approach taken in §3.1, but the details are different, and in
particular, the construction of an interval [σ, τ ] is different. Recall that Ŵn

i = n1/2Wn
i . For the

order statistics under LW(d), we use notation similar to that of §3.1, working with Ŵn in place
of Q̂n. Thus l and L are processes defined analogously to those in §3.1, such that for every t and
i, Ŵn

li(t)
(t) = Ŵn

(i)(t) and Ŵn
(Li(t))

(t) = Ŵn
i (t). We also keep the notation Λni from (46) and λni (t)

from (47), where now the latter stands for the stochastic intensity of the arrival process into queue
i under LW(d). Specifically, if Ani is the counting process for jobs routed to i, then relation (48)
holds here as well.

Proof of Theorem 2.8. (R(d)/LW(d) SDDP). Recall that the vector Tn(k) gives the service
duration of job k. That is, provided that job k is routed to server i, the duration is given by
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Tni (k) = T (k)/µni . Let k
∗
i (j) denote the index of the jth job that is processed by server i. That is,

k∗i (j) = k if job k is the jth job routed to server i. Then, instead of using (25) for WA,n
i , we can

write

WA,n
i (t) =

An
i (t)∑
j=1

Tni (k∗i (j)). (67)

A use of (48) with S = {i} gives the following. For each i there exists a standard Poisson process
πi such that the arrival process into buffer i is given by

Ani (u) = πi(nf
n
i (u)), fni (u) =

∫ u

0

λni (v)

n
dv =

∫ u

0

ΛnLi(v)

n
dv. (68)

The workload arrival process WA,n
i of (67) can be written as a time change of a renewal reward

process. Namely, if we let

Rni (u) =

πi(nu)∑
j=1

Tni (k∗i (j)), (69)

then WA,n
i = Rni ◦ fni . Indeed, by construction, the sequence Tni (k∗i (j)), j ∈ N is i.i.d. for each

i, with common distribution identical to that of Tni (1), and πi, which depends only on the arrival
mechanism, is independent of this sequence. Therefore Rni are renewal reward processes. Recall the
notation µ̄ni = µni /n and θ̄ni = n/µni . Let

R̂ni (u) = n1/2(Rni (u)− θ̄ni u) = θ̄ni n
−1/2

(
πi(nu)∑
j=1

T (k∗i (j))− nu

)
.

Using the FCLT for renewal reward processes, Theorem 7.4.1 of [67], and the fact that θ̄ni is asymp-
totic to 1/µi, the sequence R̂ni converges weakly to a (0, σ2

i )-BM, with σ2
i = µ−2

i (VT (1) + 1). In
this proof, the specific parameters of the limiting BM are not used; however, the consequential
C-tightness of R̂ni shall be used.

Using (24) we can write an equation for Ŵn
i = n1/2Wn

i , namely

Ŵn
i (u) = n1/2Rni ◦ fni (u)− n1/2

∫ u

0
1{Ŵn

i (v)>0}dv

= R̂ni ◦ fni (u) + n1/2θ̄ni f
n
i (u)− n1/2

∫ u

0
1{Ŵn

i (v)>0}dv. (70)

Fix ε > 0 and T > 0. Define

τ = τn = inf{t : Ŵn
(N)(t)− Ŵ

n
(1)(t) > 2ε}, (71)

and let Ωn = {τn < T}. Our goal is to show that P(Ωn)→ 0 as n→∞.
Let i1 = li(τ) and i2 = l2(τ). Thus i1 [resp., i2] is the index of the server with the minimal

[maximal] workload at τ . Define

σ = σn = sup{t < τ : Ŵn
i2(t)− Ŵn

i1(t) ≤ ε}.
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Figure 3: Illustration of the construction for LW(d). The circles represent the scaled workload in the buffers.
The white (gray) circle corresponds to buffer i1 (i2), with the smallest (largest) workload at time τn.

Then on the event Ωn we have Ŵn
i2

(τ)−Ŵn
i1

(τ) > 2ε, Ŵn
i2

(σ−)−Ŵn
i1

(σ−) ≤ ε. We denote J = [σ, τ ].
In the case σ = τ , J is identical to {τ}. Figure 3 illustrates our construction.

In this proof we slightly modify the notation f [J̃ ] for a function f possessing left limits defined
on R+ and an interval J̃ = [s, t], namely we shall write f [J̃ ] for f(t)− f(s−). With this notation,
we have

Ŵn
i2 [J ]− Ŵn

i1 [J ] ≥ ε, and Ŵn
i2(u) > Ŵn

i1(u) for all u ∈ J = [σ, τ ].

Again, it is more convenient to work with deterministic indices in place of i1 and i2 that are
random, and this may be achieved using the union bound. Indeed, we have

P(τ < T ) ≤
N∑
j1=1

∑
j2 6=j1

P(Ωn(j1, j2)), where

Ωn(j1, j2) =
{
there exist s, t ∈ [0, T ], s ≤ t, such that, with J = [s, t], Ŵn

j2 [J ]− Ŵn
j1 [J ] ≥ ε,

and Ŵn
j2(u) > Ŵn

j1(u) for all u ∈ J
}
. (72)

The result will follow once we show that each P(Ωn(j1, j2)) → 0. We thus fix a deterministic pair
(j1, j2), and, without loss of generality assume that (j1, j2) = (1, 2). The corresponding time interval
is denoted by J = [s, t], while Ωn(1, 2) is abbreviated as Ωn.

To this end, note that by (70) and (72),

ε ≤ R̂n2 ◦ fn2 [J ]− R̂n1 ◦ fn1 [J ] +∆n + n1/2

∫ t

s
(1{Ŵn

1 (u)>0} − 1{Ŵn
2 (u)>0})du

≤ R̂n2 ◦ fn2 [J ]− R̂n1 ◦ fn1 [J ] +∆n, (73)
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where we denote ∆n = n1/2(θ̄n2 f
n
2 [J ]− θ̄n1 fn1 [J ]), and in the second inequality we used the fact that

server 2 is non-idling on the interval [s, t], under the event Ωn. Denoting Λ̄ni = n−1Λni , using (68)
and then (47), the term ∆n is given by

∆n = n1/2

∫ t

s
(θ̄n2 Λ̄

n
L2(u) − θ̄

n
1 Λ̄

n
L1(u))du

= n1/2

∫ t

s
λ̄n(u)(θ̄n2ϕL2(u) − θ̄n1ϕL1(u))du. (74)

It follows from (72) that during [s, t], L2(u) > L1(u) and therefore either ϕL2(u) < ϕL1(u), or
ϕL2(u) = ϕL1(u) = 0 for all u ∈ [s, t]. Hence whenever ϕL1(u) = 0, the integrand in (74) is zero.
Thus

∆n = n1/2

∫ t

s
λ̄n(u)(θ̄n2ϕL2(u) − θ̄n1ϕL1(u))1{ϕL1(u)

>0}du. (75)

Next, we derive an upper bound on ∆n. First, consider the case where ϕL1(u) > ϕL2(u) > 0. By
(13),

ϕi
ϕi+1

=
N − i

N − i− (d− 1)
= 1 +

d− 1

N − i− (d− 1)
, 1 ≤ i ≤ N − d.

Therefore ϕi is decreasing in i for i ≤ N − d+ 1 and for any i and j such that ϕi > ϕj > 0,

ϕi
ϕj
≥ ϕ1

ϕ2
=
N − 1

N − d
.

Thus, whenever ϕi > ϕj > 0, using the fact that θ̄ni is asymptotic to µ−1
i ,

θ̄2ϕj − θ̄1ϕi ≤ µ−1
minϕj − µ

−1
maxϕi

=
ϕj
µmax

(µmax
µmin

− ϕi
ϕj

)
≤ ϕj
µmax

(µmax
µmin

− N − 1

N − d

)
≤ −2C̃1 < 0,

where on the last line we have used (27), and C̃1 > 0 is a suitable constant. For the case where
ϕL1(u) > ϕL2(u) = 0, we obtain

µ−1
2 ϕL2(u) − µ−1

1 ϕL1(u) = −µ−1
1 ϕL1(u) ≤ −µ−1

maxϕN−d+1 := −2C̃2 < 0. (76)

As a result, for all large n, using the lower bound λ̄min(T ) on λ̄n given in Theorem 2.8,

∆n ≤ −Cn1/2

∫ t

s
1{ϕL1(u)

>0}du, (77)

where C = λ̄min(T )(C̃1 ∧ C̃2). Combining (73) and (77) we have on Ωn,

Cn1/2

∫ t

s
1{ϕL1(u)

>0}du+ ε ≤ R̂n2 ◦ fn2 [J ]− R̂n1 ◦ fn1 [J ]. (78)
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Fix two sequences rn, r̂n that converge to zero in such a way that n1/2r̂n → ∞ and r̂n/rn → 0.
Then P(Ωn) =

∑3
k=1 P(Ωn

k ), where

Ωn
1 = Ωn holds with t− s ≤ rn,

Ωn
2 = Ωn holds with t− s > rn and

∫ t

s
1{ϕL1(u)

>0}du > r̂n,

Ωn
3 = Ωn holds with t− s > rn and

∫ t

s
1{ϕL1(u)

>0}du ≤ r̂n.

For P(Ωn
1 ), using (78), we have

P(Ωn
1 ) ≤ P

( 2∑
i=1

wT (R̂ni ◦ fni , rn) ≥ ε
)
.

The processes R̂ni are C-tight as processes converging to BMs, and by (68) and the bounds on λ̄n

given in Theorem 2.8, fni are uniformly Lipschitz and uniformly bounded. It follows that R̂ni ◦ fni
are also C-tight, hence P(Ωn

1 )→ 0.
On the event Ωn

2 , using (78) again,

2

2∑
i=1

‖R̂ni ◦ fni ‖T ≥ Cn1/2

∫ t

s
1{ϕL1(u)

>0}du ≥ Cn1/2r̂n.

Hence, by the tightness of the RVs on the LHS, P(Ωn
2 )→ 0.

On the event Ωn
3 , we have

fn1 [J ] = fn1 [s, t] =

∫ t

s
Λ̄nL1(v)dv =

∫ t

s
λ̄n(v)ϕL1(v)dv

=

∫ t

s
λ̄n(v)ϕL1(v)1{ϕL1(u)

>0}dv ≤ λ̄max(T )r̂n, t− s > rn,

where we used the bound on λ̄n stated in Theorem 2.8, and the fact that ϕi ≤ 1, for all i. Since
ϕL1(u) ≥ ϕL1(u) during [s, t], we also have fn2 [J ] ≤ fn1 [J ] ≤ λ̄max(T )r̂n. Using (78) for the final
time, we obtain

P(Ωn
3 ) ≤ P

(
wT (R̂n2 , λ̄max(T )r̂n) ≥ ε

)
.

Hence the C-tightness of R̂n2 gives P(Ωn
3 )→ 0. This completes the proof.

Proof of Proposition 2.9. Let 〈·, ·〉 denote the usual scalar product in RN . Denote µ̃ni =
µ̄ni /〈µ̄n, 1〉. Then 〈µ̃n,Wn(t)〉 is the average workload in the different buffers, with weights propor-
tional to the respective service rates. To relate this quantity to Zn, note by (16) that

Zn = 〈µn,Wn〉 = n〈µ̄n,Wn〉 = n〈µ̄n, 1〉 〈µ̃n,Wn(t)〉.

Since 〈µ̄n, 1〉 converges to a positive constant, it suffices to prove that, for all n and all t ∈ [0, T ],

n1/2〈µ̃n,Wn
i (t)〉 ≤ n1/2〈µ̃n, W̃n

i (t)〉+ δn, (79)
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where Wn
i and W̃n

i correspond to LW(d) and an arbitrary sequence of policies, respectively, and δn
is as in the statement of the result.

To this end, fix an arbitrary sequence of policies. The balance equation for the workload, (24),
is valid, and therefore we have

W̃n
i (t) = W̃A,n

i (t)−
∫ t

0
1{W̃n

i (s)>0}ds.

Recall that µ̃ni = µ̄ni /〈µ̄n, 1〉. It follows that

Ũn(t) := n1/2〈µ̃n, W̃n(t)〉

= n1/2〈µ̃n, W̃A,n(t)〉 − n1/2
∑
i

µ̃ni

∫ t

0
1{W̃n

i (s)>0}ds

= Xn(t) + Ỹ n(t),

where we set

Xn(t) = n1/2〈µ̃n, W̃A,n(t)〉 − n1/2t, Ỹ n(t) = n1/2
∑
i

µ̃ni

∫ t

0
1{W̃n

i (s)=0}ds, (80)

and used the fact that 〈µ̃n, 1〉 = 1. Now, 〈µ̃n, W̃A,n(t)〉 = 〈µn, 1〉−1
∑An(t)

k=1 T (k). Hence Xn does
not depend on the sequence of policies. We can now use the minimality property of the Skorohod
map (see Section 2 of [16]). It states that if (ϕ, η) ∈ D2

R, η is nondecreasing and nonnegative, and
ϕ+ η is nonnegative then

ϕ(t) + η(t) ≥ Γ [ϕ](t), t ≥ 0.

As a result we obtain Ũn(t) ≥ Γ [Xn](t) for all n and t ≥ 0.
Next, consider the LW(d) policy, for which the workload process is denoted by Wn. Denote

Un = n1/2〈µ̃n,Wn(t)〉. Also, let Y n be defined as in (80) with Wn in place of W̃n. Then as a
special case of the above, we have Un = Xn + Y n. Set

∆n = n1/2 max
1≤i,j≤N

‖Wn
i −Wn

j ‖T ,

and recall that, by Theorem 2.8, ∆n → 0 in probability. Let ζn(t) = (Un(t)− 2∆n)+, for t ∈ [0, T ].
Then ζn is a nonnegative process, and one has

ζn(t) = Xn(t) + εn(t) + Y n(t), t ∈ [0, T ],

for ‖εn‖T ≤ 2∆n. We now argue that
∫ T

0 ζn(t)dY n(t) = 0. Indeed, if for some t ∈ [0, T ] one
has ζn(t) > 0 then Un(t) > 2∆n. Since µ̃ni sum to 1, Un is a weighted average of Wn, hence
n1/2 maxiW

n
i (t) > 2∆n. By the definition of ∆n, it follows that n1/2 miniW

n
i (t) > ∆n. By the defi-

nition of Y n, it follows that the right-derivative of Y n at t is zero. Consequently,
∫ T

0 ζn(t)dY n(t) = 0.
The above argument shows that ζn is given by Γ [Xn + εn] on the time interval [0, T ]. By the

Lipschitz property of Γ (with Lipschitz constant 2), we have

ζn(t) ≤ Γ [Xn](t) + 2‖εn‖T , t ∈ [0, T ].
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This shows

Un(t) ≤ ζn(t) + 2∆n ≤ Γ [Xn](t) + 2‖εn‖T + 2∆n ≤ Γ [Xn](t) + 6∆n, t ∈ [0, T ].

Combined with the lower bound on Ũn, this gives Un(t) ≤ Ũn(t) + δn, upon setting δn = 6∆n,
showing (79). The result follows.

Proof of Proposition 2.4. This proof is based on the proof of Proposition 2.9. We keep the
notation Xn, Y n, Un as in the proof of Proposition 2.9, but define ∆n, ζn and εn in a different
way. The lower bound Ũn(t) ≥ Γ [Xn](t) for an arbitrary sequence of policies, provided in the above
proof, is valid.

For an upper bound in the case of SQ(d), let

∆n = n−1/2 max
1≤i,j≤N

‖Qni −Qnj ‖T ,

and note that by Theorem 2.1 ∆n → 0 in probability. Let ζn(t) = (Un(t)− cn)+, by which

ζn(t) = Xn(t) + ε(t) + Y n(t), t ∈ [0, T ],

with ‖εn‖T ≤ cn. Here, cn > 0 are constants, whose values are to be determined later in the proof.
Our goal is to argue that cn can be chosen so that cn → 0, whereas as n→∞,

P(Ωn)→ 0, where Ωn =
{∫ T

0
ζn(t)dY n(t) > 0

}
. (81)

Indeed, once this goal is achieved, the proof can be completed precisely as that of Proposition 2.9.
To this end, note that on the event Ωn there exists (random) t ∈ [0, T ] such that ζn(t) > 0

and miniW
n
i (t) = 0 (where we used (80)). Note that ζn(t) > 0 implies Un(t) > cn, and since

Un = n1/2〈µ̃n,Wn〉, namely Un is given as a mean of the terms n1/2Wn
i (with weights µ̃ni ), it also

implies n1/2 maxiW
n
i (t) > cn. On the other hand, miniW

n
i (t) = 0 implies miniQ

n
i (t) = 0, and so

by the definition of ∆n, maxiQ
n
i (t) ≤ n1/2∆n. Hence

Ωn ⊂ ∪iΩn
i , Ωn

i = {there exists t ∈ [0, T ] : Wn
i (t) > cnn

−1/2, Qni (t) ≤ n1/2∆n}.

Recall that the service times of class-i jobs are given by Ti(k)/µni and that the nominal workload at
buffer i is given by µniW

n
i (t). Hence, denoting the partial sums for the unnormalized service times

by Σi(k) =
∑

l≤k Ti(l), a simple balance equation for the nominal workload at buffer i gives

µniW
n
i (t) ≤ Σi(Ani (t))−Σi(Dn

i (t)),

where we recall that Ani and Dn
i correspond to arrival to and departure from queue i. (The above is

an inequality rather than equality, since the RHS does not take into account the job being processed
at time t). Since Ani −Dn

i = Qni , we have

Ωn
i ⊂ {there exist 0 ≤ u ≤ v ≤ Ani (T ) : Σi(v)−Σi(u) > cnµ

n
i n
−1/2, v − u < n1/2∆n}.

Recall that E[Ti(k)] = 1 and that for each i, Ti(k) are i.i.d. Then Σ̂n
i (t) = n−1/2(Σi([nt]) − nt)

converges to a standard BM. Letting C0 = infn,i n
−1µni > 0, we have on the event Ωn

i , using
Ani ≤ An and Ān = n−1An,

{there exist 0 ≤ u ≤ v ≤ Ān(T ) : Σi(nv)−Σi(nu) > C0cnn
1/2, v − u < n−1/2∆n}.
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Now, under both the inequalities above we also have

Σi(nv)−Σi(nu)− (nv − nu) > C0cnn
1/2 − n1/2∆n = n1/2(C0cn −∆n).

Hence Σ̂n
i (v)− Σ̂n

i (u) > (C0cn −∆n). Thus, on the event Ωn one must have

max
i
wĀn(T )(Σ̂

n
i , n

−1/2∆n) > (C0cn −∆n). (82)

The fact that ∆n → 0 in probability and Σ̂n
i are C-tight implies that for every finite K and ε > 0,

P(max
i
wK(Σ̂n

i , n
−1/2∆n) > ε)→ 0.

Hence by the tightness of the RVs Ān(T ),

P(max
i
wĀn(T )(Σ̂

n
i , n

−1/2∆n) > ε)→ 0.

Therefore there exists a sequence εn > 0, εn → 0 such that

c∗n := P(max
i
wĀn(T )(Σ̂

n
i , n

−1/2∆n) > εn)→ 0. (83)

Since ∆n → 0 in probability, there exists a sequence ĉn > 0, ĉn → 0 such that P(∆n > ĉn) < 1/n
for all n. Fix such a sequence. Set now cn = C−1

0 (εn + ĉn). Then cn → 0, and we obtain from (82)
and (83),

P(Ωn) ≤ P(max
i
wĀn(T )(Σ̂

n
i , n

−1/2∆n) > (C0cn −∆n))

≤ 1

n
+ P(max

i
wĀn(T )(Σ̂

n
i , n

−1/2∆n) > (C0cn − ĉn))

=
1

n
+ c∗n → 0.

This establishes (81) and completes the proof.

Proof of Proposition 2.10. Based on Theorem 2.8, the proof is similar to that of Proposition
2.6, and thus most details are omitted. However, the first step is different. Rather than working
with the mean, we follow the first step of the proof of Proposition 2.6 and define the mean with
respect to the vector µ̄n. That is, as before, let µ̃ni = µ̄ni /〈µ̄n, 1〉. Then Theorem 2.8 implies SSC,
in the sense that for each i, Ŵn

i − 〈µ̃n, Ŵn〉 ⇒ 0. Since µ̃n converges to a strictly positive vector,
it suffices to prove that 〈µ̃n, Ŵn〉 ⇒ β0.

To this end, note that it follows from (24) that

〈µ̃n, Ŵn(t)〉 = n1/2〈µ̃n,Wn(t)〉

= n1/2〈µ̃n,WA,n〉 − n1/2
∑
i

µ̃ni

∫ t

0
1{Wn

i (s)>0}ds

= n1/2〈µ̃n,WA,n〉 − n1/2t+ Y n(t),
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where we used the fact that 〈µ̃n, 1〉 = 1 and set

Y n(t) = n1/2
∑
i

µ̃ni

∫ t

0
1{Wn

i (s)=0}ds.

But 〈µ̃n,WA,n〉 = 〈µn, 1〉−1
∑An(t)

k=1 T (k) is a renewal-reward process. Appealing again to the FCLT
(Theorem 7.4.1 of [67]) shows that Kn(t) := n−1/2

[∑A(nt)
k=1 T (k)− nt

]
(where we recall that A(·) is

a standard Poisson process) converges to a (0, σ2)-BM, where σ2 = VT (1) + 1. Hence, recalling that
An(t) = A(λnt), and the notation vn of (63),

n1/2〈µ̃n,WA,n〉 − n1/2t =
n1/2

〈µn, 1〉

[A(λnt)∑
k=1

T (k)− 〈µn, 1〉t
]

=
n

〈µn, 1〉
1√
n

[A(λnt)∑
k=1

T (k)− λnt
]

+
n

〈µn, 1〉
vnt

=
1

〈µ̄n, 1〉
Kn(λ̄nt) +

1

〈µ̄n, 1〉
vnt

converges to a BM with drift Nµ̂0λ
−1 and diffusion coefficient (VT (1) + 1)1/2λ−1/2. The remainder

of the proof now follows along the lines of that of Proposition 2.6.

Proof of Proposition 2.7. We introduce some notation special to this proof. Consider the R(d)
setting. Recall that job k is replicated d times, and the replicas are sent to the buffers specified
by the set Bk. Moreover, all but one of these replicas are canceled. We introduce a scheme that
marks replicas. That is, upon the arrival of a job, one of the corresponding replicas is marked, and
all others remain unmarked. The marking scheme uses information on the service durations (given
in (22)) of the various replicas (including residual service durations of replicas that are in service),
information that is not available to the decision maker under R(d). However, the marks do not
interfere with the operation of the policy, therefore the underlying stochastic processes under R(d)
do not vary as a result of defining the marks.

The marks are constructed in a recursive way. Initially, the system is empty, therefore there
are no marks. When replicas of job k are routed to the set Bk, the replica to be marked is
determined based on past markings. To this end, a computation is carried out for each of these
replicas, as follows. For each replica, one sums the service durations of all the marked replicas in the
corresponding buffer. If there is a replica in service and it is marked, its residual service duration
is added to the sum (thus unmarked replicas are ignored in this calculation). We refer to this sum
as the marked sum. The replica with the minimal marked sum is marked; all the others remain
unmarked. On the event of a tie, the replica with the lower index is marked.

It is clear from the construction that marked replicas are precisely those corresponding to that
a LW(d) policy would select to route to a server.

On the other hand, we shall prove that under R(d), the tasks that eventually make it to the server
are exactly the marked ones (whereas unmarked tasks are those to be canceled). As a consequence,
the claim will follow.

For job k, let Mk ∈ {1, . . . , N} denote the corresponding marked replica (named by the server
assigned to it) and let Sk ∈ {1, . . . , N} denote the task that eventually makes it to the server (also
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named by the server assigned to it). It thus suffices to prove that for all k, Mk = Sk. This is proved
by induction on k. For k = 1, recall that the system starts empty. The claim is clear because both
the marking scheme and R(d) act according to the same tie breaking rule.

Next, assuming that Mj = Sj for all j < k, we show that Mk = Sk. Arguing by contradiction,
assume that for job k, the marked replica, Mk, is distinct from the replica that makes it to the
server, Sk. Let sk be the time of arrival of this job and tk the time it is accepted to service. Let
W (Mk) and W (Sk) be the marked sum that Mk and, respectively, Sk see ahead of them upon
arrival. Since Mk is the marked replica, W (Mk) ≤W (Sk) (and on the event of equality, Mk < Sk).
Note that the aforementioned marked sum corresponds to replicas that arrived earlier than job k,
because they appear ahead of one of the two replicas is the respective queues. Hence the induction
hypothesis applies to them. That is, (a) these marked replicas make it to their respective server.
Similarly, (b) all unmarked replicas ahead of replicas Mk and Sk are to be canceled before reaching
a server.

Now, during [sk, tk), the two replicas Mk and Sk of job k are present in the queues, hence the
respective servers are necessarily continuously busy throughout this time interval. Hence by (a)
and (b) above, the marked sum ahead of Mk and Sk at time tk is given by W (Mk)− (tk − sk) and
W (Mk)− (tk − sk), respectively (where this conclusion is valid even in the special case sk = tk).

By definition of Sk and tk, we have W (Sk)− (tk − sk) = 0. Hence W (Mk)− (tk − sk) ≤ 0, and
since this quantity expresses service duration it must be zero. It follows that at time tk− replicaMk

has zero marked sum ahead. Moreover, there can be no unmarked replica ahead of Mk in service
at that time, by (b) above, and there can be no unmarked replica ahead of Mk in the queue either,
because such a replica would be entering service at tk, again contradicting (b).

Thus, bothMk and Sk see no replicas ahead of them at time tk− (whether marked or unmarked),
and it is up to the tie breaking rule to select which enters service. Since, by definition, Sk enters
service, it must be that Sk < Mk. On the other hand, we also have W (Mk) = W (Sk), and so tie
breaking has also been applied at the time of arrival to determine which is to be marked, hence
Mk < Sk. This is a contradiction. It follows thatMk = Sk, and the induction argument is complete.
This completes the proof.

3.3 Proofs for LQF

As before, denote Q̂ni = n−1/2Qni , and Ŝ
n
i (t) = n−1/2(Si(nt)− nt), and similarly, denote

Âni (t) = n−1/2(Ai(nt)− nt).

The processes Ani and Sni are given as Ai ◦ Iλni and Si ◦ Iµni , respectively. Therefore

n−1/2(Ani (t)− Iλni (t)) = n−1/2(Ai(nIλ̄
n
i (t))− nIλ̄ni (t)) = (Âni ◦ Iλ̄ni )(t). (84)

Similarly,
n−1/2(Sni (t)− Iµni (t)) = (Ŝni ◦ Iµ̄ni )(t). (85)

Proof of Theorem 2.11. Fix ε > 0 and T > 0. Denote the average of a vector Xn with N
components as Xn

M = N−1
∑

iX
n
i , where X

n = An, Dn or Qn as well as Ân, D̂n, Q̂n. Define

τ = τn = inf{t : there exists m ∈ {1, ..., N} : Q̂nM (t)− Q̂nm(t) > 2ε}, (86)
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and let Ωn = {τ < T}. We prove that P(Ωn)→ 0 as n→∞. Define

σ = σn = sup{t < τ : Q̂nM (t)− Q̂nm(t) ≤ ε}.

Since the initial condition for Q̂n is zero, σ ∈ [0, τ). Denote J = [σ, τ ]. Then on the event Ωn we have
Q̂nM (τ)−Q̂nm(τ) > 2ε, Q̂nM (σ)−Q̂nm(σ) ≤ ε. Therefore, recalling the conventionX[J ] = X(τ)−X(σ),

Q̂nM [J ]− Q̂nm[J ] ≥ ε, and Q̂nM (u) > Q̂nm(u) for all u ∈ J = [σ, τ ]. (87)

We may work with a deterministic index in place of the random m, by appealing to the union
bound. That is,

P(τ < T ) ≤
N∑
j=1

P(Ωn(j)), where

Ωn(j) =
{
there exist s, t ∈ [0, T ], s < t, such that, with J = [s, t], Q̂nM [J ]− Q̂nj [J ] ≥ ε,

and Q̂nM (u) > Q̂nj (u) for all u ∈ J
}
. (88)

The result will follow once we show that each P(Ωn(j)) → 0. We thus fix a deterministic index j,
and, without loss of generality assume that j = 1. The corresponding time interval is denoted by
J = [s, t], while Ωn(1) is abbreviated as Ωn.

On Ωn, using (87) and the balance equation (32), we have

AnM [J ]−Dn
M [J ]−An1 [J ] +Dn

1 [J ] ≥ εn1/2. (89)

The cumulative amount of time the server has worked on class-i jobs during J is given by Bn
i [J ] =

Bn
i (t) − Bn

i (s). Denote Ji = [Bn
i (s), Bn

i (t)]. Then by (32), Dn
i [J ] = Sni [Jj ]. By (87), LQn(u) 6= 1

for every u ∈ J . Therefore class 1 receives no service, Dn
1 [J ] = 0 and Dn

M [J ] = N−1
∑

i 6=1D
n
i [J ].

Using these facts in (89), we obtain

AnM [J ]−N−1
∑
i 6=1

Sni [Ji]−An1 [J ] ≥ εn1/2. (90)

Dividing by n1/2, and using (84) and (85) in the above yields

N−1
∑
i

Âni ◦ Iλ̄ni [J ]−N−1
∑
i 6=1

Ŝni ◦ Iµ̄ni [Ji]− Ân1 ◦ Iλ̄n1 [J ] + Zn ≥ ε, (91)

where
Zn = n1/2

{
N−1

∑
i

Iλ̄ni [J ]−N−1
∑
i 6=1

Iµ̄ni [Ji]− Iλ̄n1 [J ]
}
. (92)

For a bound on Zn, note that

N−1
∑
i

Iλ̄ni [J ]− Iλ̄n1 [J ] ≤
(

max
i

sup
t∈[0,T ]

λ̄ni (t)−min
i

inf
t∈[0,T ]

λ̄ni (t)
)

(t− s), (93)

and ∑
i 6=1

Iµ̄ni [Ji] ≥ min
i

inf
t∈[0,T ]

µ̄ni (t)
∑
i 6=1

|Ji| =
(

min
i

inf
t∈[0,T ]

µ̄ni (t)
)

(t− s), (94)
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where |Ji| denotes the length of the interval Ji, and we used (87) to determine that the server is
non-idle during [s, t] and does not work on class-i jobs, by which

∑
i 6=1 |Ji| = t− s. Using the two

inequalities above and the assumed condition (39), we conclude that

Zn ≤ −Cn1/2(t− s),

for some positive constant C. Therefore, by using (91) and the bound on Zn, we have that on Ωn,

N−1
∑
i

wT (Âni ◦ Iλ̄ni , |J |) +N−1
∑
i 6=1

wT (Ŝni ◦ Iµ̄ni , |Ji|) + wT (Ân1 ◦ Iλ̄n1 , |J |)− Cn1/2(t− s) ≥ ε.

The fact that P(Ωn)→ 0 now follows by the C-tightness of Âni and Ŝni and the boundedness of λ̄ni
and µ̄ni by an argument similar to the one used in the proof of Theorem 2.1 (this is the argument
starting at equation (60)). Since ε > 0 is arbitrary, the result follows.

Proof of Proposition 2.12. Given the results of Theorem 2.11, this proposition can be proved by
a technique very similar to that used for proving Proposition 2.6, hence the proof is omitted.
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