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Abstract

Cuckoo hashing with a stash is a robust high-performance hashing scheme that can be used in
many real-life applications. It complements cuckoo hashing by adding a small stash storing the
elements that cannot fit into the main hash table due to collisions. However, the exact required size
of the stash and the tradeoff between its size and the memory over-provisioning of the hash table are
still unknown.

We settle this question by investigating the equivalent maximum matching size of a random
bipartite graph, with a constant left-side vertex degreed = 2. Specifically, we provide an exact
expression for the expected maximum matching size and show that its actual size is close to its
mean, with high probability. This result relies on decomposing the bipartite graph into connected
components, and then separately evaluating the distribution of the matching size in each of these
components. In particular, we provide an exact expression for any finite bipartite graph size and also
deduce asymptotic results as the number of vertices goes to infinity.

We also extend our analysis to cases where only part of the left-side vertices have a degree of
2; as well as to the case where the set of right-size vertices is partitioned into two subsets, and each
left-side vertex has exactly one edge to each of these subsets. Finally, in the case where the constant
left-side degree satisfiesd ≥ 3, we show how our method can be used to bound from above the
expected maximum size matching.

Our results improve upon previous results in two ways. First, we give an exact expression of the
expected size of the maximum matching and not only the threshold for achieving a perfect matching
with high probability (namely, we show the trade-off between the size of the stash and the memory
over-provisioning of the table, and not only the over-provisioning threshold beyond which the stash
can be eliminated). Second, our results hold for any finite graph size and are not only asymptotic.
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1 Introduction

A hash table is a classical randomized data structure that is often used to store efficiently large sets
of elements in an associative manner, as it provides fast insertion, deletionand lookup of elements.
Basically, a hash table consists of applying a hash function on each element(or more precisely, on each
key) to determine where to store it. Hash schemes differ mainly in the way they solve conflicts. A
seminal result [4] onmultiple-choice hashing schemesshows that using a constant numberd > 1 of
hash functions instead of just one significantly boosts the performance. These multiple-choice hashing
schemes can be modeled as solving a matching problem in a bipartite graph, withn elements as left-side
vertices,m locations as right-side vertices, andd edges for each left-side vertex as hash values. In this
setting, if each location can store at most one element, no hashing scheme canstore more elements than
the size of the maximum size matching.

A prime example of multiple-choice hashing scheme iscuckoo hashing[16,34], which has recently
drawn a lot of attention due to its efficient space utilization along with constant query and deletion times,
as well as a constant expected insertion time (e.g., [3,15–18,20,21,32]and references therein). In cuckoo
hashing, each of then elements (orballs) usesd independent hash functions to pick up tod locations (or
bins). Typically, each bin is of size one andd = 2. Upon insertion of a ballx, it is placed in one of its
bins even if it is full. In such a case, it displaces another ball which is movedto the bin corresponding
to its other choice. This process can cause another ball displacement andcontinues until either no ball
is displaced or an infinite loop occurs (in the latter case, the scheme fails to insert the ball into the hash
table).

It is important to notice that cuckoo hashing succeeds in inserting an elementif and only if an
augmenting path originating from the corresponding vertex exists [21]. This is because inserting an
element into a cuckoo hash table is equivalent to finding an augmenting path in the corresponding graph
(that is, a path that starts from the vertex corresponding to the considered element, and alternates between
unmatched and matched edges until it ends at a right-side vertex whose all edges are unmatched). Notice
that for any sub-path(r1, v, r2), wherev is a left-side vertex andr1, r2 are right-side vertices,(r1, v)
must be a matched edge and(v, r2) an unmatched edge. Intuitively, this corresponds to moving element
v from bin r1 to bin r2. Since maximum size matching can be computed by finding such augmenting
paths, when considering each left-side vertex only once and in arbitraryorder, we can immediately
conclude that the number of elements that a cuckoo hashing inserts successfully is exactly the size of the
maximum matching. For example, alln elements can be inserted if and only if the corresponding graph
has aperfect matching(namely, a maximum matching of sizen; see [21] for more details).

Indeed, most papers so far have focused on the threshold conditions under which there is a perfect
matching with high probability [15,16,18,21], so that all elements could fit in the hash table. However,
modern hashing schemes provide more robustness by considering an additional memory (often called
stashor overflow list) that stores a small number of elements outside the main hash table[23–27]1.
Thus, sizing the stash incurs a trade-off between its size and theload m/n of the hash-table. It is an
important design issue that is not yet understood [29, Open Question 5].This open question is answered
in this paper ford = 2 by evaluating theexpected maximum matching size, and showing that the actual
maximum matching size is sharply concentrated around its expected value. Thus, the difference between
n and the expected maximum matching size provides the required size of the stash, which should store
all elements with high probability. We also provide exact analysis when the average number of choices
is less than2 to minimize the number of memory accesses. We further obtain a lower bound on the
required stash size whend > 2.

We note that for other multiple-choice hashing schemes, our results providea lower bound on the
size of the stash. This is because the maximum matching size of the graph is always an upper bound on

1The stash can then be implemented using content-addressable memories or fast cache lines. See discussion in [25,29]. In
some cases, there is no stash and elements are simply dropped. This corresponds tolossyhash tables [17].
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the number of elements that can be inserted into the hash table. Moreover, since finding the maximum
matching in bipartite graphs is a fundamental problem with a wide range of applications in computer
science, we believe that our results have also a theoretical significance and may be used in other contexts.

To prove our results on the expected size of the maximum bipartite match, we decompose each
random bipartite graph intoconnected components, and then separately analyze each component and
evaluate the size of its local maximum bipartite match. The size of the maximum bipartite matching
is the sum of the sizes of all local matches. Then, we count the number of connected components in
the graph and thus derive the size of the maximum matching in the entire graph. Our concentration
results are based on applying Azuma’s inequality [5] to a Doob martingale, which is defined over the
maximum matching size when exposing vertices one at a time. Our results ford > 2 also use Huisimi
tree enumerations [7,22].

1.1 Our Contributions

Consider a bipartite graphG = 〈L + R, E〉, with two disjoint vertex setsL andR of sizes|L| = n and
|R| = m, and edge setE. Assume that each vertexv ∈ L independently choosesd = 2 vertices inR.
Furthermore, assume that repetitions are allowed, i.e. each vertex is pickeduniformly at random inR,
and thereforev might pick the same vertex twice, thus yielding two parallel edges.

First, given anyn and anym, we present the expected size of the maximum bipartite matching. We
obtain this result by decomposing the bipartite graph into connected components, and then separately
evaluating the distribution of the matching size in each of these components. We also later show that
with high probability the matching size is close to its expectation. The result is illustrated in Figure 2.

Theorem (appears as Theorem 3.6). Let d = 2 and b = min {n, m − 1}. The expected maximum
matching sizeµ (G) is

µ (G) = m −
b
∑

s=0

(

n

s

)

·
(

m

s + 1

)

·
(

1 − s + 1

m

)2(n−s)

·
(

s + 1

m

)2s

· 2s · s!
(s + 1)

s+1 .

Next, we obtain the asymptotic expected size of the maximum bipartite matching asn → ∞ with a
constant loadα = n

m . It is illustrated in Figure 3.

Theorem (appears as Theorem 3.9). Let d = 2, the limit normalized expected maximum matching size
γ = limn→∞

µ(G)
n is

γ = lim
n→∞

µ (G)

n
=

1

α
+

1

2α2
· W

(

−2α · e−2α
)

+
1

4α2
W 2

(

−2α · e−2α
)

, (1)

where the Lambert-W function is the inverse function of the functionω(x) = xex [12]2.

Equation (1) yields that a perfect matching requires the load to be at most1
2 (see Corollary 3.10),

thus confirming known results on the feasibility of storing all elements in a cuckoo hashing scheme [16].
Beyond this threshold, the normalized expected size of the matching decreases as the loadα increases.
Forα = 1 (corresponding ton = m) it is approximately84% (see Example B.2), implying that a stash
of size at least≈ 0.16n is required.

We extend the results above in two ways. First, we consider cases where part of the left-side vertices
have degree1 and the others have degree2. These cases occur when the average number of choices is
important, for instance to minimize the energy needed to insert all elements [23,36]. In these cases, we
present the exact and asymptotic expected sizes of the maximum bipartite matching.

Then, we assume that the setR of right-size vertices is partitioned into two subsets, and each left-
side vertex has exactly one edge to each of these subsets. This corresponds to a common alternative

2See Appendix B.1 for a plot of the Lambert-W function in Figure 1.
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model of cuckoo hashing [16,27,34]. We provide again an exact expected size of the maximum bipartite
matching in the finite case. We then show that the asymptotic limit using this static partitionis the same
as without it. We further provide the exact conditions on the static partition fora perfect matching to
exist, and in particular derive a result of [16] as a corollary.

Finally, we combine our decomposition into connected components with results onHusimi tree enu-
meration [7,22] to derive an upper bound on the expected maximum matching size for cases where there
are more than 2 choices for each left-side vertex. This additional choice,already introduced and studied
in previous works [15,18,21], enables higher matching sizes and therefore lower overflow fractions.

1.2 Related Work

Multiple-choice hashing schemes were first considered in the seminal paper of Azar et al. [4]. It showed
that placing each element in the least occupied bin among a constant numberd of random bins signifi-
cantly improves the maximum bin load tolog log n

log d + O(1) with high probability (compared to the case
whered = 1, in which the maximum bin load islog n (1 + O(1))). This result initiated an extensive
research with many variants of multiple-choice hashing schemes, which typically exhibited the so-called
power of two choiceswith d = 2 [30]. For brevity, we next survey only works that directly correspond
to our paper.

First, we relate to works which considered the same model as in this paper (a random bipartite
graph with constant left-side vertex degree). Motivated by achieving a performance guarantee for the
cuckoo hashing scheme [34], the main effort has been to find a load threshold, such that for any load
below the threshold a perfect matching exists with high probability. It is knownthat a cuckoo hashing
scheme withd = 2 succeeds with high probability if the load is less than a load threshold of1

2 , but fails
when the load is larger than12 [16]. Recent works [15, 18, 21] have settled the problem of finding the
corresponding thresholds ford > 2. Our paper differs in that we consider all possible load values for
d = 2 (where we also confirm the known results for load less than 0.5). Moreover, while most of the
works investigate only the asymptotic behavior, we also present in our paper analytical expressions for
finite random graphs along with the asymptotic ones.

The problem of finding the expected maximum matching size is also investigated assuming other
models of random graphs, mainly trees. In [9,10] the authors investigate the expected maximum match-
ing size of an(r, s)-tree, finding that for almost all(n, n)-trees the percentage of dark vertices in a
maximum matching is at least 72%. A more recent work [6] presents results related to the expected
maximum matching size of the class of simply-generated trees. A model of a loop graph is considered
by [33], showing a lower bound on the expected maximum matching size. While using the cavity method
of statistical physics [40], the authors find analytically the value under consideration for the Erd̋os graph
G(n, c/(n − 1)), wherec < 2.7183. Our paper differs in that it considers a different model of random
bipartite graphs, where each vertex inL chooses a constant number of vertices inR.

Additional related works deal with the probability of a perfect matching in otherrandom graph
models. For instance, in a random directed bipartite graph withn left-side andn right-side vertices, and
an outward degreed at each vertex, the probability that the random bipartite graph contains a perfect
matching approaches 1 ifd > 1, but approaches 0 otherwise [13]. Also, in a random bipartite graph
with n left-side vertices,n right-side vertices,cn edges picked uniformly at random, and a degree of at
least2, there is a perfect matching with high probability [19].

Finally, the conjectures in [11, 35] consider the expected minimum matching weight given a full
bipartite graph with random exponentially distributed edge weights. These conjectures are proved in [1,
28,31].

Paper Organization We start with preliminary definitions in Section 2. Section 3 provides the ex-
pected maximum matching size of random bipartite graphs with left-side vertex degree 2. Then, Sec-
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tion 4 considers a variation of the problem in which each left-side vertex degree is at most 2. Next, in
Section 5, we solve the problem in case the right-side vertices are partitionedinto two subsets, and each
left-side vertex has exactly one edge to each of these subsets. Last, Section 6 provides an upper bound
on the expected maximum matching size when the constant left-side vertex degree is at least three.

Due to space limits, some proofs as well as further evaluation of the results in this paper are presented
in Appendix A and Appendix B.

2 Definitions and Problem Statement

Given two disjoint sets of verticesL andR of sizen andm respectively, we consider a random bipartite
graphG = 〈L + R, E〉, where each vertexv ∈ L hasd = 2 outgoing edges whose destinations are
chosen independently at random among all vertices inR. We allow both choices to be the same vertex,
implying thatG might have parallel edges. For brevity, we sometimes say thatv ∈ L choosesa vertex
v′ ∈ R if (v, v′) is in E. Theload of G is denoted byα = n

m .
We also consider cases when theaverages number of choices, as defined below, is less than2

Definition 2.1. Letdv be the number of choices of each vertexv ∈ L. Theaverage number of choicesa

is the average left-side vertex degree, i.e.a =
E(
∑

v∈L
dv)

n =

∑

v∈L
E(dv)

n .

Specifically, we consider the following two extensions where, for each vertex v ∈ L, dv ≤ 2 and
a < 2: (i) a random bipartite graphGa = 〈L + R, E〉, where exactlyd2 of the vertices inL choose
two vertices inR and the otherd1 = n − d2 vertices inL choose exactly one vertex inR, such that
a = d1+2·d2

n , and,(ii) a random bipartite graphGp = 〈L + R, E〉, where each vertex inL chooses
exactly two vertices inR with probabilityp, and one vertex with probability1 − p. This implies that in
Gp, the average number of choicesa = 1 + p.

Finally, we also consider astatic partitioning of the choices; the setR is partitioned into two disjoint
setsRu and Rd of sizesβ · m and (1 − β)m. In that case, we consider a random bipartite graph
Gβ = 〈L + (Ru ∪ Rd), E〉, where each vertexv ∈ L chooses exactly one vertex inRu and another
vertex inRd.

This paper focuses on the expected size of the maximum size matching ofG, which is captured by
the following definition:

Definition 2.2. The operatorµ (·) extracts theexpected size of the maximum size matching. It operates
both on deterministic and random bipartite graphs. (Namely, for a deterministic graph H, µ (H) is
simply the size of the maximum size matching ofH.)

Definition 2.3. Thenormalized limit expected maximum matching sizeγ = limn→∞
µ(·)
n is the limit

percentage of the expected maximum matching size (out of the number ofthe vertices inL).

Our goal is to find both theexpected maximum matching sizeas well as thenormalized limit expected
maximum matching sizefor the above-mentioned graph models.

3 Bipartite Graphs with d = 2

Our approach relies on considering the connected components of the random bipartite graphG. There-
fore, we start by stating some essential lemmas on these connected components, before establishing our
result on the expected matching size.
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3.1 Connected Components in Deterministic Graphs

The following lemmas are for a given bipartite graphH = 〈LH + RH , EH〉, where each vertex inLH

has degree 2 (parallel edges are allowed), with|LH | = s and|RH | = q. Their proofs are presented in
Appendix A.

Lemma 3.1. If s ≤ q − 2, thenH is not connected.

Lemma 3.2. If H is connected ands ≥ q, thenµ (H) = q.

Lemma 3.3. If H is connected ands = q − 1 thenµ (H) = s.

Lemma 3.4. For any graph withs = q − 1, H is connected if and only if it is a tree.

Lemma 3.5. The numberTs of connected bipartite graphsH whose|LH | = s and |RH | = s + 1 is
Ts = (s + 1)s−1 s!

3.2 Expected Maximum Matching Size

In this section we deal with a random graph, in which each left-side vertex choosesd = 2 right-side
vertices (parallel edges are allowed). Note that further evaluation of theresults reported here appears
in B.2.

The next theorem is the main result of this paper.

Theorem 3.6. Letd = 2 andb = min {n, m − 1}. The expected maximum matching sizeµ (G) is

µ (G) = m −
b
∑

s=0

(

n

s

)

·
(

m

s + 1

)

·
(

1 − s + 1

m

)2(n−s)

·
(

s + 1

m

)2s

· 2s · s!
(s + 1)

s+1 .

Proof. Let M be a maximum matching ofG. Our proof is based on counting the expected number of
vertices inR that are not part ofM , and on the decomposition ofG into its connected components.

Lemma 3.1 yields that any connected component ofG with s left-side vertices has at mosts + 1
right-side vertices. We call a connected component withs left-side vertices ands + 1 right-side vertices
a deficit component of sizes. Lemma 3.3 implies that the maximum matching size of any such deficit
component iss. Therefore,exactly oneof its right-side vertices is not part ofM . Notice that in all other
connected components, whereq < s + 1, the maximum matching size ofG is exactlyq (Lemma 3.2),
implying that all their right-side vertices are part ofM .

Thus, in order to calculate the size ofM , it suffices to countthe number of deficit componentsx.
The size ofM is m−x because exactlyx right-side vertices do not participate inM , one for each deficit
component.

Let Ps = 2sTs

(s+1)2s be the probability that a bipartite graphH = 〈LH + RH , EH〉 is connected, with

degree 2 for all vertices inLH , where|LH | = s and|RH | = s + 1.

The expected number of deficit components of sizes is
(n
s

)( m
s+1

)

·
(

1 − s+1
m

)2(n−s)
·
(

s+1
m

)2s
· Ps.

The above expression consists of the following factors (in order):
(i) choosing thes vertices inL;
(ii) choosing thes + 1 vertices inR;
(iii) the probability that alls + 1 vertices inR may be connected only to the chosens vertices inL;
(iv) the probability that alls vertices inL are only connected to thes + 1 vertices in the right side; and,
(v) the probability that all chosen vertices are connected.

Finally, we calculatex by summing over all possible values ons. As mentioned before, the expected

size ofM is given bym − x. We get:µ (G) = m −∑b
s=0

(n
s

)( m
s+1

)

·
(

1 − s+1
m

)2(n−s)
·
(

s+1
m

)2s
· Ps,

whereb = min {n, m − 1}, Ps = 2sTs

(s+1)2s , andTs = (s + 1)s−2 · (s + 1)!, as found in Lemma 3.5. ⊓⊔
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3.3 Concentration Result

We next show that the size of the maximum matching is highly concentrated around its expectationµ(G).
In order to prove this result, we apply Azuma’s inequality to a Doob martingale (more specifically, the
martingale is a vertex exposure martingale of the left-side vertices).

Note that as long as all left-side vertices pick their edges independently, thisconcentration result
holds regardless of the value ofd, and more generally regardless of the specific distribution over which
the hash functions are defined. Therefore, the concentration result applies also for the settings of Sec-
tions 4–6.

Theorem 3.7. Let H be a specific instance of the random graphG, as defined in Section 2. For any
λ > 0, Pr(|µ(H) − µ(G)| > λ

√
n) < 2e−λ2/2.

Notice that if we are interested only in one-sided bounds, we can get a slightly tighter result:
Pr(µ(G) − µ(H) > λ

√
n) < e−λ2/2. This is exploited in the following corollary, which shows that

to obtain a given overflow fraction, the needed stash size grows sub-linearly with n beyond its average
value.

Corollary 3.8. To achieve an overflow fraction ofǫ in cuckoo hashing with stash, a stash of size
(

n − µ (G) +
√

2n · ln (1/ǫ)
)

suffices.

Proof. If a stash of sizen − µ (G) +
√

2n · ln 1/ǫ is used, cuckoo hashing fails if and only ifn −
µ(H) > n − µ (G) +

√

2n · ln 1/ǫ, or by rewriting it,µ(G) − µ(H) >
√

2n · ln 1/ǫ. By substituting
λ =

√

2 · ln 1/ǫ in the above one-sided bound, we get the claimed result. ⊓⊔

3.4 Limit Normalized Expected Maximum Matching Size

We are now interested in the asymptotic expression wheren → ∞ with α = n
m constant. The following

results show an interesting connection between the limit normalized expected maximum matching size
and the Lambert-W function, and even a connection between the perfect matching threshold and the
radius of convergence of the Lambert-W function [12]. For further details on the Lambert-W function,
see also Appendix B.1.

Theorem 3.9. Let d = 2. The limit normalized expected maximum matching sizeγ = limn→∞
µ(G)

n is
given by:

γ =
1

α
+

1

2α2
· W

(

−2α · e−2α
)

+
1

4α2
W 2

(

−2α · e−2α
)

, (2)

where the Lambert-W function is the inverse function of the functionω(x) = xex.

The following corollary shows that forα = n
m ≤ 1

2 , the probability for a right-side vertex to be part
of a maximum matching goes to 1. This corollary also follows from the previouslyknown result that
there is a perfect matching with high probability in cuckoo hash tables with loadα ≤ 1

2 [16].

Corollary 3.10. Let d = 2 andα = n
m ≤ 1

2 . Then the limit normalized expected maximum matching

size isγ = limn→∞
µ(G)

n = 1.

Proof. In caseα ≤ 1
2 , W

(

−2α · e−2α
)

equals−2α, thus,γ = 1
α + 1

2α2 · (−2α) + 1
4α2 (−2α)2 = 1 ⊓⊔
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4 Bipartite Graphs With dv ≤ 2

In this section we relax the constraint that each vertex inL chooses exactly 2 vertices inR, and let each
left-side vertex choose either 1 or 2 right-side vertices. Since we can divide the set of vertices either
deterministically or randomly, we will discuss the results in both cases. These results correspond for
example to cases in which the average number of choices is important (e.g. [23]). See also [36] for a
similar model.

First, in the deterministic case, we find the expected maximum matching size of the graphGa =
〈L + R, E〉, where each vertexv ∈ L independently chooses a predetermined numberdv ∈ {1, 2} of
random vertices inR, such thata = d1+2·d2

n .
Second, in the random case, we analyze the slightly different case of a random bipartite graphGp =

〈L + R, E〉 where each vertex chooses two vertices with probabilityp and one vertex with probability
1 − p.

Note that further evaluation of the results reported in this section can be found in Appendix B.3.

4.1 Connected Components in Deterministic Graphs

As in Section 3.1, we now consider a deterministic bipartite graphH = 〈LH + RH , EH〉, with |LH | = s
and|RH | = q. We assume that the degree of each vertex inLH is at most 2.

Observation 4.1. Lammas 3.1, 3.2, and 3.3 hold also when the degree of each vertex inLH is at most
(but not necessarily) 2. Note that the proofs remain almost identical to theoriginal proofs, replacing a
few equalities with the corresponding inequalities.

Lemma 4.2. Lets + 1 = q. If H is connected then the degree of each vertex inLH is 2.

Proof. Assume on the contrary thatH is connected but that there is (at least) a single vertexvL ∈ LH

with degree 1. Consider the bipartite grapĥH =
〈

L̂H + R̂H , ÊH

〉

, that is given by removing the

vertexvL (and its connected edge) fromH . By the construction of̂H, we get thatĤ is connected, but
∣

∣

∣L̂H

∣

∣

∣+ 1 <
∣

∣

∣R̂H

∣

∣

∣, which contradicts Lemma 3.1. ⊓⊔

4.2 Expected Maximum Matching Size

4.2.1 Predetermined Number of Choices

In this section, we assume that each vertexv ∈ L independently chooses1 ≤ dv ≤ 2 random vertices
in R, wheredv is predetermined. The following result provides the expected maximum matchingsize
in this case.

Theorem 4.3. Given a predetermined average number of choicesa, let d1 = (2 − a) · n and d2 =
n− d1 = (a − 1) · n be the number of vertices inL that choose one and two vertices inR, respectively.
The expected maximum matching sizeµ (Ga) is given by:

µ (Ga) = m −
b
∑

s=0

(

d2

s

)(

m

s + 1

)

·
(

1 − s + 1

m

)2(d2−s)+d1

·
(

s + 1

m

)2s

· 2s · s!
(s + 1)

s+1 ,

whereb = min {d2, m − 1}.

4.2.2 Random Number of Choices

In this section, we assume that each vertexv ∈ L independently chooses1 ≤ dv ≤ 2 random vertices in
R, where for eachv ∈ L, dv equals 2 with probabilityp, and it equals 1 with probability1 − p. Based
on Theorem 4.3, the following result reflects the expected maximum matching size in this case.
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Theorem 4.4. The expected maximum matching sizeµ (Gp) is given by

µ (Gp) =
∑n

d2=0

(

n

d2

)

· pd2 · (1 − p)
n−d2 · µ

(

G
a=1+

d2

n

)

, whereµ (Ga) is given by Theorem 4.3.

Proof. The number of vertices inL with degree 2 follows a Binomial distribution withn experiments
and a probability of successp. In Theorem 4.3 we found the expected maximum matching size of
each such instance. Thus, by the law of total expectation, the claimed resultis given by computing the
weighted average, where we computea by the equationsd1 + d2 = n andd1 + 2 · d2 = a · n. ⊓⊔

4.3 Limit Normalized Expected Maximum Matching Size

4.3.1 Predetermined Number of Choices

We are also interested in the asymptotic expression, wheren → ∞, such that we fix both the load
α = n

m and the average number of choicesa = d1+2·d2

n of the vertices. This is reflected in the following
theorem.

Theorem 4.5.The limit normalized expected maximum matching sizeγa = limn→∞
µ(Ga)

n with average

number of choicesa ∈ (1, 2] is given by: γa = lim
n→∞

µ (Ga)

n
=

1

α
+

W (−2α (a − 1) · e−aα)

2α2 · (a − 1)
+

W 2 (−2α (a − 1) · e−aα)

4α2 · (a − 1)
. For a = 1, it is given byγa = limn→∞

µ(Ga)
n = 1

α − 1
α · e−α.

Interestingly, if even a small fraction of the elements do not have choice thenthe expected maximum
matching size is not 1. This is reflected in the following corollary.

Corollary 4.6 ((No) Perfect Matching). If 1 ≤ a < 2 thenγa < 1.

4.3.2 Random Number of Choices

We now consider the case of the random bipartite graphGp = 〈L + R, E〉, where each vertex chooses
two vertices with probabilityp (and one vertex with probability1−p). As we show in the next theorem,
the asymptotic expression can be derived byγa.

Theorem 4.7. The limit expected maximum matching sizeγp = limn→∞
µ(Gp)

n where each vertex
chooses two vertices with probabilityp (and one vertex with probability1 − p) is γp = γa=1+p.

5 Static Partitioning of the Choices

We now consider the random bipartite graphGβ = 〈L + (Ru ∪ Rd), E〉, whereR is now partitioned
into two disjoint subsetsRu andRd with |Ru| = β · m and |Rd| = (1 − β)m. Each vertexv ∈ L
independently chooses a single random vertex inRu and another single random vertex inRd. This
corresponds, for example, to a hashing scheme that selects non-overlapping sets of bins as images of its
hash functions (e.g., as in multilevel hashing scheme [8] ord-left [38]).

Note that further evaluation of the results reported in this section can be found in Appendix B.4.

5.1 Connected Components in Deterministic Graphs

The following lemma counts all the possible bipartite graphsHud of the form〈LH + (RHu ∪ RHd
), EH〉

with degree 2 for each vertex inLH , where|LH | = s, |RHu | = i and|RHd
| = j, such that each vertex

v ∈ LH is connected using a single edge to some vertex inRHu and another single edge to some vertex
in RHd

.
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Observation 5.1. Lemmas 3.1, 3.2, 3.3, and 3.4 hold for this case as well.

Lemma 5.2. Lets = i+ j−1. The numberTi,j of connected bipartite graphs isTij = ij−1 · ji−1 · s! =
ij−1 · ji−1 · (i + j − 1)!

Proof. The proof is identical to the proof of Lemma 3.4 with two modifications. First, instead of
initially counting the number of trees over the setRH , we count the number of parity trees [37] over the
disjoint setsRHu andRHd

. By [37] we are given that the number of parity trees isij−1 · ji−1. Second,
we do not have to color the edges because of the partition. ⊓⊔

5.2 Expected Maximum Matching Size

In the next theorem we find the expected maximum matching size with a static partitionof the right-side
vertices.

Theorem 5.3. Given the static partitioning of the bipartite graphGβ , the expected maximum matching
sizeµ (Gβ) is

µ (Gβ) = m −
n
∑

s=0

(

n

s

)

·
b2
∑

i=b1

(

β · m
i

)

·
(

(1 − β) · m
s + 1 − i

)

·
(

1 − i

β · m

)n−s

·

(

1 − s + 1 − i

(1 − β) · m

)n−s

·
(

i

β · m

)s

·
(

s + 1 − i

(1 − β) · m

)s

· Pi,s+1−i,

whereb1 = max {0, s + 1 − (1 − β) · m}, b2 = min {s + 1, β · m, }, Pij =
Tij

(i·j)i+j−1 , and Tij =

ij−1 · ji−1 · (i + j − 1)! (as given in Lemma 5.2).

5.3 Limit Normalized Expected Maximum Matching Size

As in the last sections, we are also interested in the asymptotic expression wheren → ∞ with both fixed
α = n

m and fixedβ. This is achieved in the following theorem.

Theorem 5.4. Given the static partitioning of the bipartite graphGβ , the limit normalized expected

maximum matching sizeγβ = limn→∞
µ(Gβ)

n for β ∈ (0, 1) is given by: γβ = 1
α − β·(1−β)

α2 ·
(t1 + t2 − t1 · t2) , wheret1, t2 are provided by the following equations

α

1 − β
· e−α

β = t1 · e−t2 ,
α

β
· e− α

1−β = t2 · e−t1 (3)

and satisfy the conditiont1 · t2 ≤ 1.
For β ∈ {0, 1}, (namely, the trivial partitions), the limit normalized expected maximum matching

sizeγβ is 1
α − 1

α · e−α.

We deduce the following two corollaries.

Corollary 5.5 (Asymptotic Equivalence). Letd = 2. The limit normalized expected maximum matching
size ofGβ with β = 0.5 is the same as the limit expected maximum matching size ofG.

Proof. We substituteβ = 0.5 in the expression from Theorem 5.4, and getα
0.5 ·e−

α
0.5 = t1 ·e−t2 , α

0.5 ·
e−

α
0.5 = t2 · e−t1 . One of the solutions of the above equations ist1 = t2 = −W

(

−2αe−2α
)

. In the
proof of Theorem 3.9, we showed that−W

(

−2αe−2α
)

≤ 1. Thus,t1 · t2 < 1. By substituting this
solution in the expression forγβ from Theorem 5.4 , we get the exact expression as in Equation (2).⊓⊔

Corollary 5.6. Let d = 2, α ≤ 1
2 , and fix a partitionβ. The limit normalized expected maximum

matching sizeγβ = limn→∞
µ(Gβ)

n is 1 whenever1−
√

1−4α2

2 ≤ β ≤ 1+
√

1−4α2

2 .
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Proof. One of the solutions to Equation (3) is given by:t1 = α
1−β , t2 = α

β . By substitutingt1 andt2 in
the expression forγβ from Theorem 5.4, we get that the limit normalized expected maximum matching
size is 1. We also have to verify thatt1 · t2 ≤ 1. Since α

1−β and α
β are both positive, we are left with

α
1−β · α

β < 1. By solving the quadratic inequality, we get the claimed condition. Note that forα = 1/2
the range reduces toβ = 1/2. ⊓⊔

6 Bipartite Graphs with d > 2

In this section we briefly show how our method can be applied to find an upperbound on the ex-
pected maximum size matching where each left-side vertex hasd > 2 choices. Formally, we are
given two disjoint sets of verticesL andR of sizen andm, respectively, and a random bipartite graph
Gd = 〈L + R, E〉, where each vertexv ∈ L hasd outgoing edges whose destinations are chosen inde-
pendently at random (with repetition) among all vertices inR. We obtain the following upper bound on
the maximum matching size of the bipartite graphGd.

Theorem 6.1. Let b = min
{

n,
⌊

m−1
d−1

⌋}

andq = (d − 1) · s + 1. Then,

µ
(

Gd
)

≤ min

{

n , m −
b
∑

s=0

(q − s)

(

n

s

)

·
(

m

q

)

·
(

1 − q

m

)d(n−s)

·
(

q

m

)d·s
· ds · q!
q(d−1)·s+2

}

.

Appendix B.5 presents an evaluation of the upper bound and a comparisonto the simulated expected
matching size.

7 Concluding Remarks and Open Problems

In this work, we provided an exact expression for the expected maximum matching size of a random
bipartite graph with each left-side vertex pickingd = 2 right-side vertices. This result holds for any
given finite numbers of left-side and right-side vertices. Then, we deduced asymptotic results as the
number of vertices goes to infinity, and showed a connection to the Lambert-W function.

Both these results directly apply as exact results for the average number of inserted elements using
cuckoo hashing. They also serve as an upper bound for any alternative hashing algorithm.

We also discussed alternative cases, using either a different number ofvertex choices or a static
partitioning of the right-side vertices. Finally, we showed how our techniquecan be used to bound from
above the expected maximum matching size in cased > 2.

We are currently interested in the following two open problems:(i) The average maximum matching
size for any arbitraryd, and more generally any vertex number distribution. While we have been able to
obtain close bounds using the technique provided in this paper, we have not found general exact results,
and,(ii) The connection to the Lambert-W function. This connection is intriguing, already appears e.g.
in trees [12], and it might yield many keys to a more general counting approach in graph theory.
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Appendix

A Omitted proofs

A.1 Proof of Lemma 3.1

The proof follows by induction ons. Fors = 1, there are 2 edges in the graph and therefore every graph
with q ≥ 3 is not connected. Assume that the claim holds up untils = s′, we next prove that it holds for
any bipartite graphH ′ such that|LH′ | = s′+1 and|RH′ | ≥ s′+3. Assume towards a contradiction that
there is a graphH ′ that is connected. We first show that there is a vertex inRH′ with a degree1: This
follows from the fact that the average right-side degree is2(s′+1)

s′+3 < 2, implying that there is at least one
vertex with degree strictly less than2; since the graph is connected, there are no right-side vertices with
degree0. Let vr be such a vertex and letvℓ ∈ LH′ be the (only) left-side vertex to which it is connected.
By the induction hypothesis, the graph induced byLH′ \{vℓ} andRH′ \{vr} is not connected, implying
it has at least two connected components. InH ′, vℓ is connected tovr and since its degree is2 it can be
connected only to one of these components. This implies thatH ′ is also not connected, and the claim
follows.

A.2 Proof of Lemma 3.2

We first consider the case wheres = q. For S ⊆ LH , let d(S) ⊆ RH be the set of vertices that
are adjacent to any vertex inS. Hall’s Theorem [14] implies that to prove thatµ (H) = q (namely,
there is a perfect matching inH) it suffices to prove that for everyS ⊆ LH , |S| ≤ |d(S)|. Assume
towards a contradiction that there is a subsetS ⊆ LH such that|S| > |d(S)|, and denote|d(S)|
by b. Furthermore, consider the bipartite graphĤ =

〈

L̂H + R̂H , ÊH

〉

, in which L̂H = LH \ S,

R̂H = RH ∪ {v̂R} \ d(S) (wherev̂R is a newly-introduced vertex) and any edge inE(H) of the form
(vℓ, vr) such thatvℓ ∈ LH \S andvr ∈ d(S) is replaced with the edge(vℓ, v̂R) in ÊH . Notice that since

H is connected,̂H must be connected as well. Recall that|S| > b, thus
∣

∣

∣L̂H

∣

∣

∣ = |LH\S| ≤ s − b − 1,

while
∣

∣

∣R̂H

∣

∣

∣ = |RH ∪ {v̂R} \ d(S)| = |RH | − |d(S)| + 1 = s − b + 1. This contradicts Lemma 3.1,

implying that for everyS ⊆ LH , |S| ≤ |d(S)| and by Hall’s Theoremµ (H) = q.
For s > q, trivially µ(H) ≤ q. Therefore, it suffices to show that there exists a subsetS ⊆ LH of

sizeq, such that the corresponding bipartite subgraph is connected (and hence has a perfect matching of
sizeq). We constructS in q iterations such that at the end of iterationn we end up with some subsets
Sn ⊆ LH andQn ⊆ RH of the same sizen, whose corresponding subgraph is connected. We start by
n = 1 and pick some vertexvR ∈ RH and one of its adjacent verticesvL ∈ LH . Assuming that at the
end of iterationn, setsSn andQn were chosen (and their corresponding graph is connected), we next
constructSn+1 andQn+1. Letv1 be an arbitrary vertex inSn and letv2 be an arbitrary vertex inLH∪Sn

(such a vertex always exists sinces > q > n). Similarly, letv′1 be an arbitrary vertex inQn and letv′2
be an arbitrary vertex inRH ∪Qn. SinceH is connected there is a path betweenv1 andv2, and letv be
the first vertex along this path that is not inSn. Similarly, v′ is the first vertex along the path between
v′1 andv′2 that is not inQn. We differentiate between three cases:(i) v is adjacent toQn andv′ is toSn.
In this caseSn+1 = Sn ∪ {v} andQn+1 = Qn ∪ {v′} and the corresponding subgraph is connected;
(ii) v is not adjacent to aQn. Let w be the vertex beforev in the path betweenv1 andv2, and letw′ be
the vertex beforew in the path. Note thatw′ ∈ Sn by the choice ofv, and thatw /∈ Qn (otherwisev is
adjacent to aQn). Thus, forSn+1 = Sn ∪ {v} andQn+1 = Qn ∪ {w}, the corresponding subgraph is
connected;(iii) v′ is not adjacent to aSn. The claim holds similarly to case (ii) by looking at the path
betweenv′1 andv′2. We continue this construction forq iterations, resulting in two subsetsSq ⊆ LH and
Qq ⊆ RH of sizeq each, whose corresponding subgraph is connected.
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A.3 Proof of Lemma 3.3

Since each vertex inLH has a degree of two, the sum of the degrees of all the vertices inRH is 2s =
2q−2. Therefore, there must be at least one vertexvr ∈ RH with degree 1 (there cannot be a vertex with
degree 0 sinceH is connected). LetvL ∈ LH be the (only) vertex that is connected tovR andv̂R ∈ RH

be the other vertex that is connected tovL. Also consider the bipartite grapĥH =
〈

L̂H + R̂H , ÊH

〉

that is given by removingvR from H and adding a new edge(vL, v̂R). By the construction of̂H, the
degree of each vertex in̂LH is exactly 2. Moreover, sinceH is connected,̂H is also connected. Hence,
Lemma 3.2 implies that there is a matching of sizes in Ĥ. By the construction ofĤ, this is also a
matching in graphH.

A.4 Proof of Lemma 3.4

First, if H is a tree then it is connected by definition. To show the other direction, we assume towards
a contradiction thatH is a connected graph with cycles; letC be a cycle inH, and consider an edge
e = (vL, vR) that resides at cycleC (wherevL ∈ LH andvR ∈ RH ). We build the bipartite graph

Ĥ =
〈

L̂H + R̂H , ÊH

〉

, such thatL̂H = LH , R̂H = RH ∪ {v̂R}, wherev̂R is a newly-introduced

vertex, andÊH = EH \ {e} ∪ {ê}, whereê = (vL, v̂R). Intuitively, we replace one of the edges
in the cycle to reach for a newly-introduced vertex, and by that we increase the size of the connected
component. Notice that̂H is connected and all vertices in̂LH have a degree of 2. But,

∣

∣

∣L̂H

∣

∣

∣ <
∣

∣

∣R̂H

∣

∣

∣−1,
thus contradicting Lemma 3.1 and the claim follows.

A.5 Proof of Lemma 3.5

We count the connected bipartite graphs with two disjoint setsLH andRH . By Lemma 3.4, we have to
count the number of trees over the setLH ∪ RH , where edges must be of the form(vL, vR), such that
vL ∈ LH andvR ∈ RH . We build (and count) the set as follows: The number of trees over the setRH

is (s + 1)s−1. For each such tree instance, we put a new vertex (originally fromLH ) between each pair
of adjacent vertices. There ares! possibilities to do so.

A.6 Proof of Theorem 3.7

Our notations follow those of [2]. We first define an exposure martingale,which exposes one left-side
vertex at a time, along with all its outgoing edges. This martingale is equivalent toa regular vertex
exposure martingale, in which all right-side vertices are exposed first, and then left-side vertices are
exposed one by one.

Specifically, letG be the probability space of all two-choice bipartite graphs as defined in Section 2
andf the size of the maximum size matching of a specific instance. Assume an arbitraryorder of the
left-side verticesL = {v1, . . . vn}, and defineX0, . . . , Xn by

Xi(H) = E[f(G) | for x ≤ i and anyvy ∈ R, (vx, vy) ∈ G iff (vx, vy) ∈ H].

Note thatX0(H) = µ(G) since no edges were exposed, whileXn(H) = µ(H) as all edges are exposed.
Clearly,f satisfies the vertex Lipschitz condition since if two graphsH andH ′ differ at only one left-

side vertex,|f(H) − f(H ′)| ≤ 1 (either that vertex is in the maximum matching or not). Thus, since
each left-side vertex makes independent choices, [2, Theorem 7.2.3] implies that the corresponding
vertex exposure martingale satisfies|Xi+1 − Xi| ≤ 1. Hence, by applying Azuma’s inequality, we
immediately get the concentration result. ⊓⊔
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A.7 Proof of Theorem 3.9

We compute the limit ofµ(G)
n asn → ∞ such thatα = n

m :

γ = lim
n→∞

1

n

(

m −
b
∑

s=0

(

n

s

)(

m

s + 1

)

·
(

1 − s + 1

m

)2(n−s)

·
(

s + 1

m

)2s

· Ps

)

We find through differentiation that
(

1 − s+1
m

)2(n−s)
is an increasing function with respect ton (where

m = n
α). Moreover, the expansion of1n ·

(n
s

)( m
s+1

)

·
(

s+1
m

)2s
shows that it is also an increasing function.

Therefore, their product is also increasing and, by the monotone convergence theorem [39], we get

γ =
m

n
−

b
∑

s=0

lim
n→∞

(

1

n
·
(

n

s

)(

m

s + 1

)

·
(

1 − s + 1

m

)2(n−s)

·
(

s + 1

m

)2s

· Ps

)

By substituting the expression forPs, and using the facts that
(n
s

)

= ns

s! +O
(

ns−1
)

andlimn→∞ (1 + a/n)n =
ea, we deduce:

γ =
m

n
− 1

n

∞
∑

s=0

ns

s!
· ms+1

(s + 1)!
· e−2α(s+1) (s + 1)2s

m2s
· 2s · (s + 1)s−1 · s!

(s + 1)2s

By substitutingm = n
α , and simplifying the above expression, we get:

γ =
1

α
− 1

α
·

∞
∑

s=0

αs · 2s · (s + 1)s−1

(s + 1)!
· e−2α(s+1) =

1

α
− 1

2α2
·

∞
∑

j=1

(

−2α · e−2α
)j

· (−j)j−2

j!

Let T (x) =
∑∞

j=1
(−j)j−2

j! · xj be a formal power series, where by substitutingx = −2α · e−2α we
get the above expression. By differentiatingT (x) and multiplying byx, we get:

x · d

dx
T (x) = −

∞
∑

j=1

(−j)j−1

j!
· xj = −W (x) ,

where the Lambert-W function is the inverse function of the functionω(x) = xex [12], and the last
equality follows from its known Taylor expansion that converges as long as x is within the radius of
convergence with|x| ≤ e−1 [12].

Given thatx · d
dxT (x) = −W (x), we computeT (x):

T (x) =

∫

1

x
· (−W (x)) dx = −W (x) − 1

2
W 2 (x) ,

with convergence within|x| ≤ e−1.
Interestingly, the functionf (α) = −2α · e−2α gets its minimum atα = 0.5, where it precisely

equals the radius of convergence−e−1. Therefore, for allα we can substitutex = −2α · e−2α, since we
are within the radius of convergence ofT (x), and we finally derive the result. ⊓⊔

A.8 Proof of Theorem 4.3

As in the proof of Theorem 3.6, our proof is based on counting the expected number of vertices inL
that are not in some specific maximum matchingM of G, based on the decomposition ofG into its
connected components. The proof is almost identical, with the modification that, due to Lemma 4.2, we
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only take into account thed2 vertices that have a degree of 2 (instead of alln vertices in the proof of
Theorem 3.6).

Thus, the expected number of connected components inG with s elements inL ands + 1 in R is
given by:

(

d2

s

)(

m

s + 1

)

·
(

1 − s + 1

m

)2(d2−s)+d1

·
(

s + 1

m

)2s

· Ps,

where the above expression consists of the same considerations as in the proof of Theorem 3.6. Finally,
as before, adding the expressions for all possibles’s and subtracting the sum fromm yields the claimed
result. ⊓⊔

A.9 Proof of Theorem 4.5

We compute the limit ofµ(Ga)
n asn → ∞. We consider the case whereα = n

m anda = d1+2·d2

n > 1 are
fixed.

γa = lim
n→∞

µ (Ga)

n
= lim

n→∞
1

n

(

m −
b
∑

s=0

(

d2

s

)(

m

s + 1

)

·
(

1 − s + 1

m

)2(d2−s)+d1

·
(

s + 1

m

)2s

· Ps

)

Given thata = d1+2·d2

n and n = d1 + d2, we find thatd2 = (a − 1) · n and d1 = (2 − a) · n.
Similarly to the proof of Theorem 3.9, we first have to find that each term in thesummation is an

increasing function with respect ton. We discover that
(

1 − s+1
m

)2(d2−s)+d1

=
(

1 − s+1
m

)a·n−s
is an

increasing function (using differentiation), and also find that1
n ·
((a−1)·n

s

)( m
s+1

)

·
(

s+1
m

)2s
is an increasing

function as previously. Consequentially, each term in the sum is an increasing function and, by the
monotone convergence theorem [39], we can put the limit inside the sum. By further simplifying the
above expression as in the proof of Theorem 3.9 we eventually get:

γa =
1

α
− 1

2α2 · (a − 1)
·

∞
∑

j=1

(−j)j−2

j!
·
(

−α · 2 · (a − 1) · e−aα)j

Let T (x) =
∑∞

j=1
(−j)j−2

j! · xj be a Taylor expansion, where by substitutingx = −α · 2 · (a − 1) ·
e−aα we get the above expression. Similarly to the proof of Theorem 3.9, we getthat

T (x) = −W (x) − 1

2
W 2 (x) ,

with convergence within|x| ≤ e−1 [12].
Since the functionf (α) = −α · 2 · (a − 1) · e−aα gets its minimum atα = a−1, where it equals

−2(a−1)
a e−1, and

∣

∣

∣−2(a−1)
a e−1

∣

∣

∣ ≤ e−1 for all a ∈ [1, 2], then for allα we can substitutex = −α · 2 ·
(a − 1) · e−aα. Hence, it is within the radius of convergence ofT (x).

Finally, for the case wherea = 1, thend2 = 0 andd1 = n. Therefore, the expression for the

expected maximum matching size is reduced tom −
(

m ·
(

1 − 1
m

)n)

. Thus,

γa = lim
n→∞

µ (Ga)

n
= lim

n→∞
1

n
·
(

m −
(

m ·
(

1 − 1

m

)n))

=
1

α
− 1

α
· e−α.

⊓⊔
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A.10 Proof of Corollary 4.6

We show thatγa is strictly monotonically increasing, thusγa < 1 for 1 ≤ a < 2, sinceγa = 1 for
a = 2. This is shown by differentiatingγa with respect toa:

dγa

da
= − 1

4α2 (a − 1)2
·
(

W
(

−2α (a − 1) · e−aα)+ 2α (a − 1)
)

· W
(

−2α (a − 1) · e−aα)

Both the first factor− 1
4α2(a−1)2

and the third factorW (−2α (a − 1) · e−aα) are negative. Thus, if the

second factor is positive thendγa

da is an increasing function with respect toa ∈ [1, 2).
If α > 0.5, then2α (a − 1) > 1, and sinceW (x) is minimized forx = −1

e where it equals−1, the

second factor is positive. On the other hand, consider thatα ≤ 0.5. SinceW
(

−2α (a − 1) · e−2α(a−1)
)

=

−2 (a − 1) α andW (x) is an increasing function, then we have to show that−2α (a − 1) ·e−2α(a−1) <
−2α (a − 1) ·e−aα, that is,−2α (a − 1) > −aα. The last inequality can easily be shown for1 ≤ a < 2.

⊓⊔

A.11 Proof of Theorem 4.7

We compute the limit ofµ(Gp)
n asn → ∞.

γp = lim
n→∞

µ (Gp)

n
= lim

n→∞
1

n

n
∑

d2=0

(

n

d2

)

· pd2 · (1 − p)n−d2 · µ
(

G
a=1+

d2
n

)

Let X ∼ Bin (n, p) be the random variable counting the number of vertices inL that choose 2 vertices
in R. By summing over three disjoint ranges of possible values ford2, we get

γp = lim
n→∞

⌊np−n
3
4 ⌋

∑

d2=0

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

+

lim
n→∞

⌊np+n
3
4 ⌋−1

∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

+

lim
n→∞

n
∑

d2=⌊np−n
3
4 ⌋

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

By Chebyshev’s inequality we get thatPr
{

|X − np| > n
1

4

√

np (1 − p)
}

≤ 1

n
1
4

. Sincep (1 − p) ≤ 1,

we get thatPr
{

|X − np| > n
3

4

}

≤ 1

n
1
4

. By the fact that1n · µ
(

G
a=1+

d2
n

)

≤ 1, we find that the first

and the third limits go to zero.
Since the functionµ (Ga) is increasing with respect toa (this can be shown by a simple combinato-

rial argument), we get the following lower bound:

lim
n→∞

(

1 − 1

n
1

4

)

· 1
n
·µ
(

G
a=1+

⌊np−n
3
4 ⌋+1

n

)

≤ lim
n→∞

⌊np+n
3
4 ⌋−1

∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2}·
1

n
·µ
(

G
a=1+

d2
n

)

= γp

as well as the following upper bound:

γp = lim
n→∞

⌊np+n
3
4 ⌋−1

∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(

G
a=1+

d2
n

)

≤ lim
n→∞ 1 · 1

n
· µ
(

G
a=1+

⌊np+n
3
4 ⌋−1

n

)

.

By the squeeze theorem, we get the claimed result. ⊓⊔
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A.12 Proof of Theorem 5.3

Similarly to the proof of Theorem 3.6, our proof is based on counting the expected number of vertices
in L that are not in some specific maximum matchingM of Gβ , based on the decomposition ofG
into its connected components. As in the proof of Theorem 3.6, we considerthe number of connected
components with exactlys vertices inL andq = s + 1 vertices inRu ∪Rd, where we have to sum over
all possible combinations(i, s + 1 − i), wherei corresponds to the number of vertices taken fromRu

ands + 1 − i corresponds to those taken fromRd.
Thus, the expected number of connected components inGβ with s vertices inL, i vertices inRu

ands + 1 − i vertices inRd is given by:
(

n

s

)

·
(

β · m
i

)(

(1 − β) · m
s + 1 − i

)

·
(

1 − i

β · m

)n−s

·
(

1 − s + 1 − i

(1 − β) · m

)n−s

·
(

i

β · m

)s

·
(

s + 1 − i

(1 − β) · m

)s

· Pi,s+1−i,

The above expression consists of the following factors (in order):
(i) choosing thes vertices inL;
(ii) choosing thei vertices inRu;
(iii) choosing thes + 1 − i vertices inRd;
(iv) the probability that alli vertices inRu may be connected only to the chosens vertices inL;
(v) the probability that alls + 1 − i vertices inRd may be connected only to the chosens vertices inL;
(vi) the probability that alls vertices inL are only connected to thei vertices inRu;
(vii) the probability that alls vertices inL are only connected to thes + 1 − i vertices inRd; and,
(viii) the probability that all chosen vertices are connected.

Finally, adding the expressions for all possibles’s and i’s and subtracting it fromm yields the
claimed result. ⊓⊔

A.13 Proof of Theorem 5.4

As in the proof of Theorem 3.9, we compute the limit ofµ(G)
n asn → ∞. We consider the case where

α = n
m and0 ≤ β ≤ 1 are fixed:

γβ = lim
n→∞

µ (Gβ)

n
= lim

n→∞
1

n
·


m −
n
∑

s=0

(

n

s

)

·
b2
∑

i=b1

(

β · m
i

)(

(1 − β) · m
s + 1 − i

)

·
(

1 − i

β · m

)n−s

·

(

1 − s + 1 − i

(1 − β) · m

)n−s

·
(

i

β · m

)s

·
(

s + 1 − i

(1 − β) · m

)s

· Pi,s+1−i

)

By substituting the expression forPi,s+1−i from Theorem 5.3, and moving
(n
s

)

inside the second sum-
mation, we get:

γβ = lim
n→∞

(

1

α
− 1

n
·

n
∑

s=0

s+1
∑

i=0

(

n

s

)

·
(

β · m
i

)(

(1 − β) · m
s + 1 − i

)

·
(

1 − i

β · m

)n−s

·
(

1 − s + 1 − i

(1 − β) · m

)n−s

·

(

i

β · m

)s

·
(

s + 1 − i

(1 − β) · m

)s

· i(s+1−i)−1 · (s + 1 − i)i−1 · (i + (s + 1 − i) − 1)!

(i · (s + 1 − i))i+(s+1−i)−1

)
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By substitutingα = n
m , we get:

γβ = lim
n→∞





1

α
− 1

n
·

n
∑

s=0

s+1
∑

i=0

(

n

s

)

·
(

β
α · n

i

)(

1−β
α · n

s + 1 − i

)

·
(

1 − i
β
α · n

)n−s

·
(

1 − s + 1 − i
1−β
α · n

)n−s

·
(

i
β
α · n

)s

·
(

s + 1 − i
1−β
α · n

)s

· i(s+1−i)−1 · (s + 1 − i)i−1 · (i + (s + 1 − i) − 1)!

(i · (s + 1 − i))i+(s+1−i)−1

)

As in the proof of Theorems 3.9 and 4.5, using the monotone convergence theorem [39], we can put
the limit inside the sum. By further simplifying the above expression with similar consideration to the
proofs of Theorems 3.9 and 4.5, we get eventually:

γβ =
1

α
− β · (1 − β)

α2

∞
∑

s=0

s+1
∑

i=0

i(s+1−i)−1 · (s + 1 − i)i−1

i! · (s + 1 − i)!
·
(

α

β
· e−

α
1−β

)s+1−i

·
(

α

1 − β
· e−

α
β

)i

We switch the order of summation and get thati ∈ {0, 1, . . .} ands goes frommax{0, i− 1} to∞. We
also substitutej = s + 1 − i (or s = i + j − 1). Thus,

γβ =
1

α
− β · (1 − β)

α2

∞
∑

i=0

∞
∑

j=max{0,i−1}

ij−1 · ji−1

i! · j! ·
(

α

1 − β
· e−

α
β

)i

·
(

α

β
· e−

α
1−β

)j

(4)

Let T (x, y) =
∑

j+i≥1
ij−1·ji−1

i!·j! · xi · yj . This expression has been previously found [16] to be the
multivariate formal power series about the point(x0, y0) = (0, 0) of t (x, y) = t1 (x, y) + t2 (x, y) −
t1 (x, y)·t2 (x, y) wheret1 (x, y) andt2 (x, y) are given by the following implicit multivariate functions:

x = t1 (x, y) · e−t2(x,y) , y = t2 (x, y) · e−t1(x,y) (5)

However, the mentioned range of convergence in [16] is insufficient for our case. (Note also that in [16]
the sums should be overi + j ≥ 1 and not overi, j ≥ 0.)

Since we compute the limit normalized expected maximum matching, then the expression for γβ in
Equation (4) is bounded from below by 0, thus, by Equation (4) the doublesummation is bounded from
above by a constant. On the other hand, all terms in the summation in Equation (4)are positive. Then,
if we look at the partial-sum series (by defining an arbitrary order), we get an increasing series which is
bounded. Thus, by the monotone convergence theorem the double series converges for any valuesx and
y satisfyingx = α

1−β · e−
α
β andy = α

β · e−
α

1−β .
However, the multivariate functions in Equation (5) have multiple branches (as the Lambert-W

function does [12]), that is, for a givenx andy there is more than one solution. We aim to find this
branch in terms oft1 andt2. We use the implicit function theorem to find the derivatives singularities.
The Jacobian is given by

J =

(

e−t2(x,y) −t1 (x, y) · e−t2(x,y)

−t2 (x, y) · e−t1(x,y) e−t1(x,y)

)

,

and it is invertible wherever|J | 6= 0. Thus, there is a derivative singularity in caset1 (x, y)·t2 (x, y) = 1,
which is the only solution. Therefore, as the given formal power series inEquation (4) is about the point
(x0, y0) = (0, 0) (which corresponds toα = 0), wheret1 = t2 = 0, it converges to the branch where
t1 (x, y) · t2 (x, y) ≤ 1 (note that botht1 (x, y) andt2 (x, y) are always positive). ⊓⊔

19



A.14 Proof of Theorem 6.1

We first establish a few lemmas before proving the result. As before, we start by considering a deter-
ministic bipartite graphH = 〈LH + RH , EH〉 with degreed of each vertex inLH , where|LH | = s and
|RH | = q.

Lemma A.1. If (d − 1) · s ≤ q − 2, thenH is not connected.

Proof. As in the proof of Lemma 3.1, the proof follows by induction ons. For s = 1, there ared
edges in the graph and therefore every graph withq ≥ d + 1 is not connected. Assuming that the claim
holds up untils = s′, we next prove that it holds for any bipartite graphH ′ such that|LH′ | = s′ + 1
and|RH′ | ≥ (d − 1) · (s′ + 1) + 2. Assume towards a contradiction that there is a graphH ′ which is
connected.

We first show that there ared− 1 verticesvr1
, vr2

, . . . , vrd−1
in RH′ , all of a degree1 such that they

are connected to the same vertexvℓ ∈ RH′ : The sum of right-side vertex degree isd · (s′ + 1). Also,
since the graph is connected there are no right-side vertices with degree0. This implies that there are at
least(d − 2) · (s′ + 1) + 2 vertices of degree 1, thus there exists a vertexvℓ ∈ RH′ as claimed.

By the induction hypothesis, the graph induced byLH′ \ {vℓ} andRH′ \ {vr1
, vr2

, . . . , vrd−1
} is not

connected, which implies that it has at least two connected components. InH ′, vℓ is connected to all
verticesvr1

, vr2
, . . . , vrd−1

. Since its degree isd it can be connected only to one of these components.
This implies thatH ′ is not connected as well, and the claim follows. ⊓⊔

Lemma A.2. If H is connected and(d − 1) · s = q − 1 thenµ (H) = s.

Proof. Assume towards a contradiction thatµ (H) < s, and consider some maximum matchingM .
Let vℓ ∈ LH be a vertex that is not in the maximum matchingM , andvr1

, vr2
, . . . , vrd−1

be the vertices
in R (which are not necessarily distinct) that are connected tovℓ. All verticesvr1

, vr2
, . . . , vrd−1

are
connected also to another vertex inLH , otherwisevℓ was in the maximum matchingM .

Consider the bipartite grapĥH =
〈

L̂H + R̂H , ÊH

〉

, which is given by removingvℓ from H. Since
the right-side verticesvr1

, vr2
, . . . , vrd−1

are also connected to the other left-side vertices (exceptvℓ),

the bipartite grapĥH is connected. However, we get that
∣

∣

∣L̂H

∣

∣

∣ = s − 1 and
∣

∣

∣R̂H

∣

∣

∣ = (d − 1) · s + 1,
which contradicts with Lemma A.1. ⊓⊔

We note that in contrast to Lemma 3.2, the corresponding proposition is not true for d > 2; that
is, if H is connected ands ≤ q, then the maximum matching size is not necessarilys. As a counter
example, consider the case whered = 3 ands = q = 3, where two left-side vertices choose the same
single right-side vertex (using all their 3 choices), and the other left-side vertex chooses all 3 right-side
vertices. The resulting bipartite graph is clearly connected, but the maximum matching size is only 2
(only one of the first two left-vertices can be in the matching).

Lemma A.3. If (d − 1) · s = q − 1 thenH is connected if and only if it is a tree.

Proof. The proof consists of the exact same constructionĤ as in the proof of Lemma 3.4, where we
eventually get a contradiction with Lemma A.1. ⊓⊔

Lemma A.4. The numberT d
s of connected bipartite graphsH whose|LH | = s and|RH | = 2 (d − 1) ·

s + 1 is T d
s = ((d−1)·s+1)!

((d−1)!)s ((d − 1) · s + 1)s−2.

Proof. By Lemma A.3, we have to count the number of bipartite trees over the two disjointsetsLH and
RH of sizes and(d − 1) · · · + 1. SinceH is a tree, then there are no cycles. Consequently, each one
of the vertices inLH is connected tod distinct vertices inRH . Moreover, no two vertices inLH share
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Figure 1: the Lambert-W function

more than 1 vertex inRH . For each vertexvℓ ∈ LH , let Sv be the set of thed right-side vertices thatvℓ

is connected to and also let the cycleCvℓ
be a cycle that consists of thed vertices ofSv.

Consider the grapĥH =
〈

R̂H , ÊH

〉

, which is given by connecting each cycleCvℓ1
to Cvℓ2

us-
ing a common vertexvr if and only if vr is connected to bothvℓ1 and vℓ2 . The resulting graph
Ĥ is a Husimi graph over(d − 1) · s + 1 vertices, where the number of such (labeled) graphs is
((d−1)·s+1)!
((d−1)!)s·s! ((d − 1) · s + 1)s−2 [7,22].

Finally, each setSv is determined by the (labeled) vertex inRL. Thus, we multiply bys! the above
expression. ⊓⊔

We are now able to prove the result.
Proof. [of Theorem 6.1] LetM be a maximum matching ofG. Similarly to the proof of Theorem 3.6,
the proof is based on counting the expected number of vertices inR that are not part ofM , and on the
decomposition ofG into its connected components.

We count the expected number of connected components withs left-side vertices andq = (d − 1) ·
s+1 right-side vertices. By Lemma A.2, the maximum matching size of each such connected component
is exactlys. Thus, there areq − s right-side vertices that are not inM .

Let H be a bipartite graphH = 〈LH + RH , EH〉, with degreed for all vertices inLH , where

|LH | = s and|RH | = q. The probabilityPs thatH is connected is given byPs = (d!)sT d
s

qd·s .
The remainder of the proof is similar to the proof of Theorem 3.6. ⊓⊔

B Evaluation

B.1 The Lambert-W Function

The Lambert-W function, usually denoted byW (·), is given by the following implicit representation:

z = W (z) · eW (z),

wherez is a complex number [12].
For real valued arguments, i.e.z is real valued,W (z) has two real-valued branches: the principal

branch, denoted byW0 (·) and the branchW−1 (·). Figure 1 shows the two real-valued branches. For
instance,W0

(

−e−1
)

= W−e−1 = −1 andW0 (0) = 0.
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Figure 2: Expected maximum matching size for various values ofn andm (normalized byn)
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Figure 3: Limit expected maximum matching size for various values of loadα, normalized byn

B.2 Expected Maximum Matching Size Withd = 2

Figure 2 shows the expected maximum matching size normalized byn for various values ofn andm.
We show the expected maximum matching size both via our analytical model from Theorem 3.6 and via
simulations. For each instance ofn andm, we randomized 10000 bipartite graphs. The results fairly
confirm that our model is accurate, and also show the convergence of the expected maximum matching
size to its limit. A simple evaluation appears in the following example.

Example B.1. In casen = m = 2 (andd = 2), the expected maximum matching size isµ (G) = 15
8 =

1.875. This simple result can be justified as follows: In all cases the maximum matching size is 2, except
for the two cases of maximum matching of size 1, where all 4 edges are connected to a specific vertex in

R. Each such case occurs with probability
(

1
2

)4
. Hence,µ (G) = 2 − 1

16 − 1
16 = 15

8 .

Figure 3 shows the expected maximum matching size normalized byn as found in Theorem 3.9,
for various values of loadα, both via our analytical model and via simulations. The simulations were
performed usingm = 1000 andn = α · m. For each value ofα, we randomized 100 bipartite graphs.
The results fairly confirm that our model is accurate.

We conclude by the following simple example:

Example B.2. In caseα = 1, that isn = m, the normalized limit expected maximum matching size is

γ = 1 +
1

2
· W

(

−2 · e−2
)

+
1

4
W 2

(

−2 · e−2
)

≈ 0.8381.
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Figure 5: Limit expected maximum matching size for various values ofβ andα, normalized byn

B.3 Expected Maximum Matching Size Withdv ≤ 2

Figure 4 shows the normalized limit expected maximum matching size, for various values of loadα
and average number of choicesa, both via our analytical model (from Theorem 3.9) as well as via
simulations. The simulations were performed usingm = 1000 andn = α · m, where for each instance
of the simulation we randomized 100 bipartite graphs. The results fairly confirm that our model is
accurate.

B.4 Expected Maximum Matching Size With Static Partition

Figure 5 shows the limit expected maximum matching size normalized byn, for various values of loadα
and partitionβ, both via our analytical model (from Theorem 5.4) and via simulations. The simulations
were performed usingm = 1000 andn = α · m. For each pair of values ofα andβ, we randomized
100 bipartite graphs. The results fairly confirm that our model is accurate.

As expected, the limit expected maximum matching size is symmetric aroundβ = 0.5. In case
α = 0.5 andβ < 0.5, while it seems that the normalized limit expected maximum matching size is
1, it is not the case. For instance, in caseα = 0.5 andβ = 0.45, we get that1 − γβ ≈ 1.675 · 10−7.
However, there are cases where imbalance in the partition sizes does not reduceγβ, as shown for instance
in Corollary 5.6.
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B.5 Expected Maximum Matching Size Withd > 2

We evaluate the upper bound found for the expected matching size (Theorem 6.1). Figure 6 shows
our upper bound as well as simulation results for various values of the number of choicesd. We took
n = m = 100, while for each instance ofd, we randomized105 bipartite graphs. In the case ofd = 2,
our upper bound matches the exact expression found in Theorem 3.6 and thus matches the simulation
results. In addition, we can compare simulation results for higher values ofd with our bounds. For
instance, in the case ofd = 3 the normalized expected maximum matching size via the simulation is
0.9402, while our upper bound is0.9508. In cased = 4, we get a simulation value of0.9795, while the
corresponding upper bound is0.9820.
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