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Abstract

Cuckoo hashing with a stash is a robust high-performanceitgscheme that can be used in
many real-life applications. It complements cuckoo hagtig adding a small stash storing the
elements that cannot fit into the main hash table due to moiks However, the exact required size
of the stash and the tradeoff between its size and the memerypoovisioning of the hash table are
still unknown.

We settle this question by investigating the equivalentimar matching size of a random
bipartite graph, with a constant left-side vertex degiee 2. Specifically, we provide an exact
expression for the expected maximum matching size and shatits actual size is close to its
mean, with high probability. This result relies on deconipgghe bipartite graph into connected
components, and then separately evaluating the diswibwf the matching size in each of these
components. In particular, we provide an exact expressioarfy finite bipartite graph size and also
deduce asymptotic results as the number of vertices goefinday.

We also extend our analysis to cases where only part of thsill# vertices have a degree of
2; as well as to the case where the set of right-size verticpartitioned into two subsets, and each
left-side vertex has exactly one edge to each of these suligatlly, in the case where the constant
left-side degree satisfies > 3, we show how our method can be used to bound from above the
expected maximum size matching.

Our results improve upon previous results in two ways. Fivstgive an exact expression of the
expected size of the maximum matching and not only the tltdgbr achieving a perfect matching
with high probability (namely, we show the trade-off betwake size of the stash and the memory
over-provisioning of the table, and not only the over-psamiing threshold beyond which the stash
can be eliminated). Second, our results hold for any finiéelyisize and are not only asymptotic.
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1 Introduction

A hash table is a classical randomized data structure that is often useddae#icently large sets

of elements in an associative manner, as it provides fast insertion, dedettbfookup of elements.
Basically, a hash table consists of applying a hash function on each el@nemre precisely, on each
key) to determine where to store it. Hash schemes differ mainly in the way tiey sonflicts. A
seminal result [4] omultiple-choice hashing schemsisows that using a constant numbker- 1 of
hash functions instead of just one significantly boosts the performameseTmultiple-choice hashing
schemes can be modeled as solving a matching problem in a bipartite graph eléthents as left-side
vertices,m locations as right-side vertices, adedges for each left-side vertex as hash values. In this
setting, if each location can store at most one element, no hashing schestereamore elements than
the size of the maximum size matching.

A prime example of multiple-choice hashing schemeuskoo hashingl 6, 34], which has recently
drawn a lot of attention due to its efficient space utilization along with constaarygnd deletion times,
as well as a constant expected insertion time (e.qg., [3,15-18,20, 2h@2¢ferences therein). In cuckoo
hashing, each of the elements (oballs) usesd independent hash functions to pick upittmcations (or
bing). Typically, each bin is of size one amld= 2. Upon insertion of a balt, it is placed in one of its
bins even if it is full. In such a case, it displaces another ball which is mavéae bin corresponding
to its other choice. This process can cause another ball displacemerraimties until either no ball
is displaced or an infinite loop occurs (in the latter case, the scheme fails tbthes®all into the hash
table).

It is important to notice that cuckoo hashing succeeds in inserting an eleéfreamd only if an
augmenting path originating from the corresponding vertex exists [21]s i§Hbecause inserting an
element into a cuckoo hash table is equivalent to finding an augmenting pathdartiesponding graph
(thatis, a path that starts from the vertex corresponding to the condieleraent, and alternates between
unmatched and matched edges until it ends at a right-side vertex whodgeslare unmatched). Notice
that for any sub-patlir, v, 2), wherev is a left-side vertex and,, ro are right-side verticegy, v)
must be a matched edge apdr,) an unmatched edge. Intuitively, this corresponds to moving element
v from bin r; to bin r,. Since maximum size matching can be computed by finding such augmenting
paths, when considering each left-side vertex only once and in arbitrder, we can immediately
conclude that the number of elements that a cuckoo hashing insertssutiges exactly the size of the
maximum matching-or example, alh elements can be inserted if and only if the corresponding graph
has aperfect matchingnamely, a maximum matching of size see [21] for more details).

Indeed, most papers so far have focused on the threshold conditides which there is a perfect
matching with high probability [15, 16, 18, 21], so that all elements could fitéhtish table. However,
modern hashing schemes provide more robustness by consideringiionadldnemory (often called
stashor overflow list) that stores a small number of elements outside the main hasHaabeyT.
Thus, sizing the stash incurs a trade-off between its size anlbalden /n of the hash-table. It is an
important design issue that is not yet understood [29, Open QuestidhiS]open question is answered
in this paper forl = 2 by evaluating thexpected maximum matching siaad showing that the actual
maximum matching size is sharply concentrated around its expected valug tiddifference between
n and the expected maximum matching size provides the required size of thewdtadhshould store
all elements with high probability. We also provide exact analysis when tlrager@umber of choices
is less thar2 to minimize the number of memory accesses. We further obtain a lower bouna on th
required stash size wheh> 2.

We note that for other multiple-choice hashing schemes, our results pravayeer bound on the
size of the stashrhis is because the maximum matching size of the graph is always an uppet do

1The stash can then be implemented using content-addressable meméa&sache lines. See discussion in [25,29]. In
some cases, there is no stash and elements are simply dropped. Tésponds téossyhash tables [17].



the number of elements that can be inserted into the hash table. Moreogerfisting the maximum
matching in bipartite graphs is a fundamental problem with a wide range of appfis in computer
science, we believe that our results have also a theoretical significathoessy be used in other contexts.

To prove our results on the expected size of the maximum bipartite match, wenpgese each
random bipartite graph intoonnected componentand then separately analyze each component and
evaluate the size of its local maximum bipartite match. The size of the maximum bipartithingg
is the sum of the sizes of all local matches. Then, we count the numbenoécted components in
the graph and thus derive the size of the maximum matching in the entire graphco@centration
results are based on applying Azuma'’s inequality [5] to a Doob martingaliehvidrdefined over the
maximum matching size when exposing vertices one at a time. Our resudtsfdr also use Huisimi
tree enumerations [7,22].

1.1 Our Contributions

Consider a bipartite grapfl = (L + R, E), with two disjoint vertex set& and R of sizes|L| = n and
|R| = m, and edge sel’. Assume that each vertexe L independently chooses= 2 vertices inR.
Furthermore, assume that repetitions are allowed, i.e. each vertex is pickernly at random inR,
and therefor@ might pick the same vertex twice, thus yielding two parallel edges.

First, given anyh» and anym, we present the expected size of the maximum bipartite matching. We
obtain this result by decomposing the bipartite graph into connected compoaedtthen separately
evaluating the distribution of the matching size in each of these componentslsdatar show that
with high probability the matching size is close to its expectation. The result is illedtia Figure 2.

Theorem (appears as Theorem 3.@)etd = 2 andb = min{n,m — 1}. The expected maximum
matching size: (G) is
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Next, we obtain the asymptotic expected size of the maximum bipartite matching-asc with a
constant loadv = . Itis illustrated in Figure 3.

Theorem (appears as Theorem 3.9etd = 2, the limit normalized expected maximum matching size

v = limy, @ is
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where the Lamber# function is the inverse function of the functiofw) = ze® [12]°.

Equation (1) yields that a perfect matching requires the load to be at%dme Corollary 3.10),
thus confirming known results on the feasibility of storing all elements in a @icksehing scheme [16].
Beyond this threshold, the normalized expected size of the matching desieathe load increases.
Fora = 1 (corresponding taw = m) it is approximately84% (see Example B.2), implying that a stash
of size at leastz 0.16n is required.

We extend the results above in two ways. First, we consider cases vdredd fhe left-side vertices
have degreé and the others have degr2eThese cases occur when the average number of choices is
important, for instance to minimize the energy needed to insert all element$£]28)3hese cases, we
present the exact and asymptotic expected sizes of the maximum bipartite matchin

Then, we assume that the detof right-size vertices is partitioned into two subsets, and each left-
side vertex has exactly one edge to each of these subsets. This ond®$p a common alternative

2See Appendix B.1 for a plot of the Lambdiit-function in Figure 1.



model of cuckoo hashing [16,27,34]. We provide again an exa&a®d size of the maximum bipartite
matching in the finite case. We then show that the asymptotic limit using this static pagitimsame
as without it. We further provide the exact conditions on the static partitioa foerfect matching to
exist, and in particular derive a result of [16] as a corollary.

Finally, we combine our decomposition into connected components with resiissomi tree enu-
meration [7,22] to derive an upper bound on the expected maximum matéhénfpiscases where there
are more than 2 choices for each left-side vertex. This additional ctadieady introduced and studied
in previous works [15, 18, 21], enables higher matching sizes anddhetewer overflow fractions.

1.2 Related Work

Multiple-choice hashing schemes were first considered in the seminal giapzar et al. [4]. It showed
that placing each element in the least occupied bin among a constant ndisfia@ndom bins signifi-
cantly improves the maximum bin load iﬁ;}é’% + O(1) with high probability (compared to the case
whered = 1, in which the maximum bin load i®gn (1 + O(1))). This result initiated an extensive
research with many variants of multiple-choice hashing schemes, whichltygxhibited the so-called
power of two choicewiith d = 2 [30]. For brevity, we next survey only works that directly correspon
to our paper.

First, we relate to works which considered the same model as in this papandann bipartite
graph with constant left-side vertex degree). Motivated by achievingrimpnance guarantee for the
cuckoo hashing scheme [34], the main effort has been to find a loadht¢tdesuch that for any load
below the threshold a perfect matching exists with high probability. It is kninaha cuckoo hashing
scheme withi = 2 succeeds with high probability if the load is less than a load thresho}dkmﬂt fails
when the load is larger tha@ [16]. Recent works [15, 18, 21] have settled the problem of finding the
corresponding thresholds fdr> 2. Our paper differs in that we consider all possible load values for
d = 2 (where we also confirm the known results for load less than 0.5). Merewhile most of the
works investigate only the asymptotic behavior, we also present in our papiytical expressions for
finite random graphs along with the asymptotic ones.

The problem of finding the expected maximum matching size is also investigatechiag other
models of random graphs, mainly trees. In [9, 10] the authors investigatxgected maximum match-
ing size of an(r, s)-tree, finding that for almost alln, n)-trees the percentage of dark vertices in a
maximum matching is at least 72%. A more recent work [6] presents resldteddo the expected
maximum matching size of the class of simply-generated trees. A model of alapp i considered
by [33], showing a lower bound on the expected maximum matching size. Wihilg the cavity method
of statistical physics [40], the authors find analytically the value undesideration for the Erdis graph
G(n,c/(n — 1)), wherec < 2.7183. Our paper differs in that it considers a different model of random
bipartite graphs, where each vertex/ithooses a constant number of vertice®in

Additional related works deal with the probability of a perfect matching in otaadom graph
models. For instance, in a random directed bipartite graphmiigtfit-side and right-side vertices, and
an outward degreéd at each vertex, the probability that the random bipartite graph containdexipe
matching approaches 1df > 1, but approaches 0 otherwise [13]. Also, in a random bipartite graph
with n left-side verticesp right-side verticesgn edges picked uniformly at random, and a degree of at
least2, there is a perfect matching with high probability [19].

Finally, the conjectures in [11, 35] consider the expected minimum matchinchivgigen a full
bipartite graph with random exponentially distributed edge weights. Thegeatores are proved in [1,
28,31].

Paper Organization We start with preliminary definitions in Section 2. Section 3 provides the ex-
pected maximum matching size of random bipartite graphs with left-side vertgral@. Then, Sec-



tion 4 considers a variation of the problem in which each left-side vertesedag at most 2. Next, in
Section 5, we solve the problem in case the right-side vertices are partititoddio subsets, and each
left-side vertex has exactly one edge to each of these subsets. Ladgin$egrovides an upper bound
on the expected maximum matching size when the constant left-side verteedegt least three.

Due to space limits, some proofs as well as further evaluation of the results paffer are presented
in Appendix A and Appendix B.

2 Definitions and Problem Statement

Given two disjoint sets of verticels and R of sizen andm respectively, we consider a random bipartite
graphG = (L + R, E), where each vertex € L hasd = 2 outgoing edges whose destinations are
chosen independently at random among all vertices.ilVe allow both choices to be the same vertex,
implying thatG might have parallel edges. For brevity, we sometimes sayutl@ai. chooses vertex
v' € Rif (v,v) isin E. Theload of G is denoted byx = .

We also consider cases when thasrages number of choigezs defined below, is less than

Definition 2.1. Letd, be the number of choices of each ventex L. Theaverage number of choices

(ZueL d”) — ZUGL ]E(d”)'

n n

. . . E
is the average left-side vertex degree, ie=-

Specifically, we consider the following two extensions where, for eadexe € L, d, < 2 and
a < 2: (i) a random bipartite graptd, = (L + R, E), where exactlyly of the vertices inL choose
two vertices inR and the otherl; = n — dy vertices inL choose exactly one vertex iR, such that
a = d”nﬂ, and, (ii) a random bipartite grapt¥, = (L + R, F), where each vertex il chooses
exactly two vertices iR with probabilityp, and one vertex with probability — p. This implies that in
Gy, the average number of choices= 1 + p.

Finally, we also considerstatic partitioning of the choiceshe setR is partitioned into two disjoint
setsR, and R, of sizesg - m and (1 — 5)m. In that case, we consider a random bipartite graph
Gg = (L+ (R, U Ry), E), where each vertex € L chooses exactly one vertex i, and another
vertex inR,.

This paper focuses on the expected size of the maximum size matchingadfich is captured by
the following definition:

Definition 2.2. The operaton () extracts theexpected size of the maximum size matchigperates
both on deterministic and random bipartite graphs. (Namely, for a detertiwrgsaph H, p (H) is
simply the size of the maximum size matchingf of

Definition 2.3. Thenormalized limit expected maximum matching size= lim,, .. # is the limit
percentage of the expected maximum matching size (out of the nuntbeveftices in..).

Our goal is to find both thexpected maximum matching séswell as th@ormalized limit expected
maximum matching sider the above-mentioned graph models.

3 Bipartite Graphs with d = 2

Our approach relies on considering the connected components of thamdnipartite grapld;. There-
fore, we start by stating some essential lemmas on these connected compmsfentésestablishing our
result on the expected matching size.



3.1 Connected Components in Deterministic Graphs

The following lemmas are for a given bipartite grafih= (L + Ry, Er), where each vertex ifvy
has degree 2 (parallel edges are allowed), With| = s and|Rg| = ¢. Their proofs are presented in
Appendix A.

Lemma 3.1. If s < ¢ — 2, thenH is not connected.

Lemma 3.2. If H is connected and > ¢, thenu (H) = q.

Lemma 3.3. If H is connected and = g — 1 thenu (H) = s.

Lemma 3.4. For any graph withs = ¢ — 1, H is connected if and only if it is a tree.

Lemma 3.5. The numbefT of connected bipartite graphd whose|Ly| = s and|Ry| = s+ 1 is
Ty = (s+1)*tsl

3.2 Expected Maximum Matching Size

In this section we deal with a random graph, in which each left-side vehiegses! = 2 right-side
vertices (parallel edges are allowed). Note that further evaluation akethdts reported here appears
in B.2.

The next theorem is the main result of this paper.

Theorem 3.6. Letd = 2 andb = min {n, m — 1}. The expected maximum matching $iZ&) is

=m- () () () ()

Proof. Let M be a maximum matching @. Our proof is based on counting the expected number of
vertices inR that are not part o/, and on the decomposition 6f into its connected components.
Lemma 3.1 yields that any connected component:afiith s left-side vertices has at most+ 1
right-side vertices. We call a connected component wigft-side vertices and+ 1 right-side vertices
a deficit component of size Lemma 3.3 implies that the maximum matching size of any such deficit
component is. Thereforeexactly oneof its right-side vertices is not part éff . Notice that in all other
connected components, where< s + 1, the maximum matching size 6t is exactlyq (Lemma 3.2),
implying that all their right-side vertices are part/af.
Thus, in order to calculate the size f, it suffices to counthe number of deficit components
The size ofM is m — x because exactly right-side vertices do not participate id, one for each deficit
component.

Let Py = (2 T) be the probability that a bipartite graph = (Ly + Ry, Er) is connected, with

degree 2 for all vertices if 7, where|Ly| = s and|Ry| = s + 1.
.. .. 2(n—s) 2s

The expected number of deficit components of siz (")) (,'7,) - (1 - 5;—1) : (%) - Ps.
The above expression consists of the following factors (in order):
(i) choosing thes vertices inL;
(il) choosing thes + 1 vertices inR;
(i) the probability that alk + 1 vertices inR may be connected only to the chosevertices inL;
(iv) the probability that alk vertices inL are only connected to the+ 1 vertices in the right side; and,
(v) the probability that all chosen vertices are connected.

Finally, we calculate: by summing over all possible values &nAs mentioned before, the expected

size of M is given bym — z. We get:u (G) = m — 0 (% )(S-‘rl) (1 - ﬂ)Q("_s) : (m)% P,

m m

whereb = min {n,m — 1}, P, = (QHT)*%, andT, = (s+1)* 2. (s +1)!, as found in Lemma 3.5. O



3.3 Concentration Result

We next show that the size of the maximum matching is highly concentratedditsexpectation(G).
In order to prove this result, we apply Azuma’s inequality to a Doob martingated specifically, the
martingale is a vertex exposure martingale of the left-side vertices).

Note that as long as all left-side vertices pick their edges independenthgahigntration result
holds regardless of the value @fand more generally regardless of the specific distribution over which
the hash functions are defined. Therefore, the concentration regliksalso for the settings of Sec-
tions 4-6.

Theorem 3.7. Let H be a specific instance of the random graghas defined in Section 2. For any
A >0, Pr(|u(H) — (@) > M) < 2e /2.

Notice that if we are interested only in one-sided bounds, we can get dhsltgihter result:
Pr(u(G) — p(H) > A/n) < e **/2. This is exploited in the following corollary, which shows that
to obtain a given overflow fraction, the needed stash size grows sudyiingith » beyond its average
value.

Corollary 3.8. To achieve an overflow fraction afin cuckoo hashing with stash, a stash of size

(n —p(G)+2n-1n (1/6)) suffices.

Proof. If a stash of sizev — . (G) + /2n - In1/e is used, cuckoo hashing fails if and onlyrif—
w(H) >n—p(G)++/2n-1nl/e, or by rewriting it,u(G) — u(H) > /2n -In1/e. By substituting
A = /2 -1n1/ein the above one-sided bound, we get the claimed result. 0

3.4 Limit Normalized Expected Maximum Matching Size

We are now interested in the asymptotic expression whereoo with o = - constant. The following
results show an interesting connection between the limit normalized expectédumaxnatching size
and the Lamberi” function, and even a connection between the perfect matching thregimlithe
radius of convergence of the Lambé¥i-function [12]. For further details on the Lambéit-function,

see also Appendix B.1.
Theorem 3.9. Letd = 2. The limit normalized expected maximum matching gizelim,, ., %G) is
given by:

vy = l + L W (_2a . 6—20) + LWZ (—2a . €—2a) , @)

a 202 4a?

where the Lambert# function is the inverse function of the functiotz) = ze®.

The following corollary shows that far = - < % the probability for a right-side vertex to be part
of a maximum matching goes to 1. This corollary also follows from the previdkrsyn result that
there is a perfect matching with high probability in cuckoo hash tables withdogd% [16].

Corollary 3.10. Letd = 2 anda = > < % Then the limit normalized expected maximum matching
WG)

size isy = lim,, o == = 1.

Proof. Incasen < J, W (—2a - e72*) equals—2a, thus,y = 1 + 713 - (=2a) + 15 (—20)* =10



4 Bipartite Graphs With d, < 2

In this section we relax the constraint that each vertek @ahooses exactly 2 vertices B\, and let each
left-side vertex choose either 1 or 2 right-side vertices. Since we cahedive set of vertices either
deterministically or randomly, we will discuss the results in both cases. Tlessés correspond for
example to cases in which the average number of choices is important @&)g. $2e also [36] for a
similar model.

First, in the deterministic case, we find the expected maximum matching size ofaplegr =
(L + R, E), where each vertex € L independently chooses a predetermined nurdpet {1,2} of
random vertices iR, such tha = 4242

Second, in the random case, we analyze the slightly different cas@oélam bipartite graptv,, =
(L + R, E) where each vertex chooses two vertices with probahiligywd one vertex with probability
1—np.

Note that further evaluation of the results reported in this section can be folAppendix B.3.

4.1 Connected Components in Deterministic Graphs

Asin Section 3.1, we now consider a deterministic bipartite gfdph (L + Ry, Er), with |Lg| = s
and|Ry| = ¢q. We assume that the degree of each verteiinis at most 2.

Observation 4.1. Lammas 3.1, 3.2, and 3.3 hold also when the degree of each verigx is at most
(but not necessarily) 2. Note that the proofs remain almost identical torigenal proofs, replacing a
few equalities with the corresponding inequalities.

Lemma4.2. Lets + 1 = ¢. If H is connected then the degree of each verteknis 2.

Proof. Assume on the contrary thaf is connected but that there is (at least) a single variex Ly
with degree 1. Consider the bipartite graph = <£H + RH,EH>, that is given by removing the
vertexv;, (and its connected edge) frof . By the construction off, we get that/ is connected, but
‘ﬁH‘ +1< ‘]?H , which contradicts Lemma 3.1. O

4.2 Expected Maximum Matching Size
4.2.1 Predetermined Number of Choices

In this section, we assume that each vertex L independently choosds< d, < 2 random vertices
in R, whered, is predetermined. The following result provides the expected maximum matsiziag
in this case.

Theorem 4.3. Given a predetermined average number of choiceetd; = (2 —a) - n andds =
n—d; = (a — 1) - n be the number of vertices ihthat choose one and two verticeslin respectively.
The expected maximum matching gi2&-, ) is given by:

(G)—m—i d2 m 1_3+1 Adome)td o 1N 25 gl
#itra) = —\s s+1 m m (s+1)8+17

whereb = min {dg, m — 1}.

4.2.2 Random Number of Choices

In this section, we assume that each veitex L independently choosds< d, < 2 random vertices in
R, where for each € L, d, equals 2 with probability, and it equals 1 with probability — p. Based
on Theorem 4.3, the following result reflects the expected maximum matchmgizs case.

7



Theorem 4.4. The expected maximum matching giZ€-),) is given by
1(Gp) =00 () 0™ - (1 —p)" (Ga:H@), wherey (G,) is given by Theorem 4.3.

Proof. The number of vertices ih with degree 2 follows a Binomial distribution with experiments
and a probability of succegs In Theorem 4.3 we found the expected maximum matching size of
each such instance. Thus, by the law of total expectation, the claimedisegivitn by computing the
weighted average, where we computey the equationd; + ds = nandd; +2-ds = a - n. a

4.3 Limit Normalized Expected Maximum Matching Size

4.3.1 Predetermined Number of Choices

We are also interested in the asymptotic expression, where oo, such that we fix both the load
a = 2 and the average number of choices: 9242 of the vertices. This is reflected in the following
theorem.

Theorem 4.5. The limit normalized expected maximum matchinggize lim,, . @ with average
1 (Ga) 1 W(-2a(a—1)-e7)

number of choices € (1,2] is given by: v, = lim = —+ +
n—oo n o 20[2 . (a — 1)
W2 (=2a(a—1)-e799) L : Ga) 1 1 -
o (a—1) .Fora =1, itis given byy, = lim,, .o, ©57% = = — L .¢72,

Interestingly, if even a small fraction of the elements do not have choicdlteexxpected maximum
matching size is not 1. This is reflected in the following corollary.

Corollary 4.6 ((No) Perfect Matching)If 1 < a < 2 theny, < 1.

4.3.2 Random Number of Choices

We now consider the case of the random bipartite gi@ph= (L + R, E), where each vertex chooses
two vertices with probability (and one vertex with probability — p). As we show in the next theorem,
the asymptotic expression can be derivedyhy

Theorem 4.7. The limit expected maximum matching sige = lim,, . @ where each vertex
chooses two vertices with probabilityand one vertex with probability — p) is v, = Ya=1p-

5 Static Partitioning of the Choices

We now consider the random bipartite gra@h = (L + (R, U Ry), E), whereR is now partitioned
into two disjoint subset$?,, and R, with |R,| = - m and|Ry| = (1 — §) m. Each vertex € L
independently chooses a single random verte®jnand another single random vertex Ry. This
corresponds, for example, to a hashing scheme that selects norppirglaets of bins as images of its
hash functions (e.g., as in multilevel hashing scheme [@}leift [38]).

Note that further evaluation of the results reported in this section can be folAppendix B.4.

5.1 Connected Components in Deterministic Graphs

The following lemma counts all the possible bipartite grafihg of the form(Ly + (Ry, U Ry,), Er)
with degree 2 for each vertex iy, where|Ly| = s, |Ry,| = i and|Rpy,| = j, such that each vertex
v € Ly is connected using a single edge to some vertd®#n and another single edge to some vertex
in RHd-



Observation 5.1. Lemmas 3.1, 3.2, 3.3, and 3.4 hold for this case as well.
Lemma5.2. Lets = i + j — 1. The numbef; ; of connected bipartite graphs&§; = i/~1 - ji=1. sl =
R L (e B

Proof. The proof is identical to the proof of Lemma 3.4 with two modifications. First, instea
initially counting the number of trees over the g&%, we count the number of parity trees [37] over the
disjoint setsky;, and Ry,. By [37] we are given that the number of parity treeg/is' - j*~1. Second,
we do not have to color the edges because of the partition. O

5.2 Expected Maximum Matching Size

In the next theorem we find the expected maximum matching size with a static pasfitteright-side
vertices.

Theorem 5.3. Given the static partitioning of the bipartite grajghs, the expected maximum matching
sizep (Gg) is

ermm£0) - ) () (55

() () ()

G BER

whereb; = max{0,s+1— (1 —3)-m}, bp = min{s+1,8-m,}, P =
=171 (i 4+ 7 —1)! (as given in Lemma 5.2).

andT;; =

5.3 Limit Normalized Expected Maximum Matching Size

As in the last sections, we are also interested in the asymptotic expressimvwheoo with both fixed
a = ;- and fixed3. This is achieved in the following theorem.

Theorem 5.4. Given the static partitioning of the bipartite graghiz, the limit normalized expected

maximum matching sizez = lim, o “(S") for 3 € (0,1) is given by: 75 = 1 — W :
(t1 +ta — t1 - t2) , wherety, to are provided by the following equations
ot St e ©

and satisfy the conditioty - to < 1.

For g € {0,1}, (namely, the trivial partitions), the limit normalized expected maximum rimagch

sizeygist — 1. e,

We deduce the following two corollaries.

Corollary 5.5 (Asymptotic Equivalence)Letd = 2. The limit normalized expected maximum matching
size ofG 3 with 3 = 0.5 is the same as the limit expected maximum matching size of

Proof. We substitutes = 0.5 in the expression from Theorem 5.4, and ggte*o% =ty-e 2, 0E
e~ 05 = ty - e '1. One of the solutions of the above equations;is= to = —W (—2ae72?). In the
proof of Theorem 3.9, we showed thatV’ (—2ae2%) < 1. Thus,t; - t2 < 1. By substituting this
solution in the expression forz from Theorem 5.4 , we get the exact expression as in Equation(2).

Corollary 5.6. Letd = 2, a < % and fix a partitions. The limit normalized expected maximum
matching sizeys = lim, . @ is 1 whenever—v1=1e® < g < @.
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Proof. One of the solutions to Equation (3) is given by.= ﬁ, ty = %. By substitutingt; andts in

the expression forz from Theorem 5.4, we get that the limit normalized expected maximum matching
size is 1. We also have to verify that- to < 1. Since;%5 and% are both positive, we are left with
ﬁ : % < 1. By solving the quadratic inequality, we get the claimed condition. Note that forl /2

the range reduces o= 1/2. O

6 Bipartite Graphs with d > 2

In this section we briefly show how our method can be applied to find an upperd on the ex-
pected maximum size matching where each left-side vertexihas 2 choices. Formally, we are
given two disjoint sets of vertices and R of sizen andm, respectively, and a random bipartite graph
G? = (L + R, E), where each vertex ¢ L hasd outgoing edges whose destinations are chosen inde-
pendently at random (with repetition) among all vertice®in/Ne obtain the following upper bound on
the maximum matching size of the bipartite gra@h

Theorem 6.1. Letb = min {n, wf_ﬂ} andg = (d—1)-s+ 1. Then,

M(Gd)gmin{n 7 m_szi%(q_s)cb).(ZL).(1_;)d(n—s)'(i>d.s'm}'

Appendix B.5 presents an evaluation of the upper bound and a comprigensimulated expected
matching size.

7 Concluding Remarks and Open Problems

In this work, we provided an exact expression for the expected maximuiching size of a random
bipartite graph with each left-side vertex pickidg= 2 right-side vertices. This result holds for any
given finite numbers of left-side and right-side vertices. Then, we aestlasymptotic results as the
number of vertices goes to infinity, and showed a connection to the Larribéutaction.

Both these results directly apply as exact results for the average nuifibsexed elements using
cuckoo hashing. They also serve as an upper bound for any alerhashing algorithm.

We also discussed alternative cases, using either a different numbertex choices or a static
partitioning of the right-side vertices. Finally, we showed how our techniqummebe used to bound from
above the expected maximum matching size in dase2.

We are currently interested in the following two open proble()sthe average maximum matching
size for any arbitraryl, and more generally any vertex number distributig¥hile we have been able to
obtain close bounds using the technique provided in this paper, we hefmind general exact results,
and, (ii) The connection to the Lambeli? function This connection is intriguing, already appears e.g.
in trees [12], and it might yield many keys to a more general counting apipiaaraph theory.
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Appendix

A Omitted proofs

A.1 Proof of Lemma 3.1

The proof follows by induction or. Fors = 1, there are 2 edges in the graph and therefore every graph
with ¢ > 3 is not connected. Assume that the claim holds up until s, we next prove that it holds for
any bipartite graptil’ such thatL /| = '+ 1 and|Ry/| > s'+ 3. Assume towards a contradiction that
there is a graplf!’ that is connected. We first show that there is a verteR jn with a degree: This
follows from the fact that the average right-side degre%j/%l) < 2, implying that there is at least one
vertex with degree strictly less th&nsince the graph is connected, there are no right-side vertices with
degred). Letwv, be such a vertex and let € Ly be the (only) left-side vertex to which it is connected.
By the induction hypothesis, the graph inducedhy \ {v,} and Ry \ {v, } is not connected, implying

it has at least two connected componentsHInw, is connected t@, and since its degree isit can be
connected only to one of these components. This impliesAlas also not connected, and the claim
follows.

A.2 Proof of Lemma 3.2

We first consider the case whese= ¢. ForS C Ly, letd(S) C Ry be the set of vertices that
are adjacent to any vertex i#. Hall's Theorem [14] implies that to prove that(H) = ¢ (namely,
there is a perfect matching i) it suffices to prove that for ever§ C Ly, |S| < |d(S)|. Assume
towards a contradiction that there is a subSet_ Ly such that|S| > |d(S)|, and denotgd(S)|
by b. Furthermore, consider the bipartite graph = <ﬁH + RH,EH>, inwhich Ly = Ly \ S,

Ry = Ry U{ogr}\ d(S) (Wheredp is a newly-introduced vertex) and any edgetift!) of the form
(vg, vy) such thaty € L\ S andv, € d(S) is replaced with the eddey, o) in E. Notice that since

H is connectedH must be connected as well. Recall thsi > b, thus‘ﬁH‘ =|Lg\S| <s—b—1,

while )RH’ = |Rg U{or}\d(S)| = |Ru| — |d(S)| +1 = s — b+ 1. This contradicts Lemma 3.1,
implying that for everyS C Ly, |S| < |d(S)| and by Hall's Theorem (H) = q.

Fors > ¢, trivially u(H) < . Therefore, it suffices to show that there exists a subset L of
sizeq, such that the corresponding bipartite subgraph is connected (ace has a perfect matching of
sizeq). We constructS in ¢ iterations such that at the end of iteratiorwe end up with some subsets
S, C Ly and@,, C Ry of the same size, whose corresponding subgraph is connected. We start by
n = 1 and pick some vertexp € Ry and one of its adjacent verticeg € L. Assuming that at the
end of iteratiom, setsS,, and@,, were chosen (and their corresponding graph is connected), we next
constructS,,; 1 and@,,+1. Letwv; be an arbitrary vertex i, and letv, be an arbitrary vertex ith ;; U S,,
(such a vertex always exists sinee> ¢ > n). Similarly, letv] be an arbitrary vertex i,, and letv},
be an arbitrary vertex iRy U (Q,,. SinceH is connected there is a path betwegrandwv,, and letv be
the first vertex along this path that is not$h). Similarly, v’ is the first vertex along the path between
v} andvj that is not in@,,. We differentiate between three cas@pv is adjacent ta@),, andv’ is to S,,.

In this caseS,,+1 = S, U {v} and@,+1 = @, U {v'} and the corresponding subgraph is connected,;
(i) v is not adjacent to &),,. Letw be the vertex before in the path between; andvsy, and letw’ be

the vertex beforev in the path. Note that’ € S,, by the choice of), and thatw ¢ @Q,, (otherwisev is
adjacent to &),,). Thus, forS,,+1 = S, U {v} andQ,+1 = @, U {w}, the corresponding subgraph is
connected(iii) v’ is not adjacent to &,. The claim holds similarly to case (ii) by looking at the path
betweeny| andv;. We continue this construction fgriterations, resulting in two subse$s C Ly and

@, C Ry of sizeq each, whose corresponding subgraph is connected.
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A.3 Proof of Lemma 3.3

Since each vertex i iy has a degree of two, the sum of the degrees of all the verticBg;iis 2s =
2q — 2. Therefore, there must be at least one vettex Ry with degree 1 (there cannot be a vertex with
degree 0 sincé is connected). Let;, € Ly be the (only) vertex that is connectedutg andor € Ry

be the other vertex that is connectedufa Also consider the bipartite grapti = <£H + Ry, EH>

that is given by removin@R from H and adding a new edde;, 0R). By the construction off, the
degree of each vertex ihy; is exactly 2. Moreover, sinc# is connectedH is also connected. Hence,
Lemma 3.2 implies that there is a matching of sizim H. By the construction off, this is also a
matching in graph.

A.4 Proof of Lemma 3.4

First, if H is a tree then it is connected by definition. To show the other direction, wenestowards
a contradiction tha#f is a connected graph with cycles; [@tbe a cycle inH, and consider an edge
e = (vr,vr) that resides at cyclé’ (wherev;, € Ly andvr € Ry). We build the bipartite graph

H = <LH + RH,EH> such thatLy = Ly, Ry = Ry U {vr}, wherevg is a newly-introduced

vertex, andEy = Ey \ {e} U {é}, where¢ = (vz,0g). Intuitively, we replace one of the edges
in the cycle to reach for a newly-introduced vertex, and by that we iserd# size of the connected
component. Notice thal is connected and all vertices iny; have a degree of 2. Bth;H’ < ‘RH‘ —

thus contradicting Lemma 3.1 and the claim follows.

A.5 Proof of Lemma 3.5

We count the connected bipartite graphs with two disjoint sgtand R;. By Lemma 3.4, we have to
count the number of trees over the $gt U Ry, where edges must be of the fofy,, vg), such that
vy, € Ly andvg € Ry. We build (and count) the set as follows: The number of trees over thieset
is (s + 1)5_1. For each such tree instance, we put a new vertex (originally figihbetween each pair
of adjacent vertices. There askpossibilities to do so.

A.6 Proof of Theorem 3.7

Our notations follow those of [2]. We first define an exposure martingatch exposes one left-side
vertex at a time, along with all its outgoing edges. This martingale is equivalentégular vertex
exposure martingale, in which all right-side vertices are exposed firdtihem left-side vertices are
exposed one by one.

Specifically, letG be the probability space of all two-choice bipartite graphs as defined tio8&c
and f the size of the maximum size matching of a specific instance. Assume an arbitlaryof the
left-side verticed. = {v1,...v,}, and defineXy, ..., X,, by

Xi(H) = E[f(GQ) | forz <iand any, € R, (v, vy) € G iff (vg,vy) € H].

Note thatXy(H) = u(G) since no edges were exposed, willg( H) = p(H ) as all edges are exposed.
Clearly, f satisfies the vertex Lipschitz condition since if two graphand H’ differ at only one left-
(H) — f(H")| < 1 (either that vertex is in the maximum matching or not). Thus, since
each left-side vertex makes independent choices, [2, Theorem 7.2.B¢sntipat the corresponding
vertex exposure martingale satisfigs;;1 — X;| < 1. Hence, by applying Azuma’s inequality, we

immediately get the concentration result. O
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A.7 Proof of Theorem 3.9

We compute the limit of*(n—G) asn — oo such thatv = -

1 b (n m s+ 1)\ 2(n—s) s+ 1\%
— lim = _ 1= ) . P
1=t (- ()0 () e

2(n—s
We find through differentiation the<t1 — %1) =) is an increasing function with respectiqwhere

m

_ M h . n 54128 h hatitis al . ing f .
m = ). Moreover, the expansion gf- () () - (W) shows that it is also an increasing function.
Therefore, their product is also increasing and, by the monotone igemee theorem [39], we get

b 2(n—s) 2s
R () e
no oo\ n S s+ 1 m m

By substituting the expression fét, and using the facts thét) = 2 +0 (n*~!) andlim, o (1 + a/n)" =
e, we deduce:

goo Mot eyt )P 2 (s k)
n nosl (s+1) m2s (s41)*

By substitutingm = -, and simplifying the above expression, we get:

1 1 & (s+1)t 1 1 & Coa\d (=)
- - _ . s,98 NV o2a(sH]) 2 © —9q e 2).
TTa T a sz::oa (s+1)! ‘ a  2a? ;( ae ) J!
LetT (z) = 352, (‘jj)!j_Q - 27 be a formal power series, where by substituting —2a - e~2* we
get the above expression. By differentiatifigz) and multiplying byz, we get:
d =)
. T - _ Ll —
v 2T (2) Z e =W (a),

where the Lambert¥ function is the inverse function of the functianz) = ze® [12], and the last
equality follows from its known Taylor expansion that converges as lang ia within the radius of
convergence withe| < e~! [12].

Given thatr - L7 (z) = —W (z), we computel’ (z):

T(@) = [ 2 (W @) de = -W (&) - 502 (@),

T

with convergence withimz| < e!.

Interestingly, the functiorf (o) = —2a - e~2® gets its minimum ate = 0.5, where it precisely
equals the radius of convergenee—!. Therefore, for altv we can substitute = —2a - e~2%, since we
are within the radius of convergence®fz), and we finally derive the result. 0

A.8 Proof of Theorem 4.3

As in the proof of Theorem 3.6, our proof is based on counting the ¢éegemimber of vertices ik
that are not in some specific maximum matchingof G, based on the decomposition Gfinto its
connected components. The proof is almost identical, with the modification tleatpd.emma 4.2, we
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only take into account the, vertices that have a degree of 2 (instead ofallertices in the proof of
Theorem 3.6).
Thus, the expected number of connected componerdswith s elements inl. ands + 1 in R is

given by:
dg - s+1 2(d2—s)+d1 s+1 2s
(5)(5—1—1)'(1_ m ) < m ) Fo

where the above expression consists of the same considerations asrioahef Theorem 3.6. Finally,
as before, adding the expressions for all possilsi@and subtracting the sum from yields the claimed
result. O

A.9 Proof of Theorem 4.5

We compute the limit ofS=) asn — co. We consider the case where= 2 anda = “+2% > 1 are
fixed.

b 2(d2—5)+d1 2s
. 1(Gy) .1 da m ( s—|—1> (s—i—l)
a = 1 = 1 — — . 1 — . * PS
il nl—{go n nl—r}gon m Z S s+1 m m

s=0

Given thata = “+2% andn = d; + dp, we find thatdy = (a—1) - n andd; = (2 —a) - n.
Similarly to the proof of Theorem 3.9, we first have to find that each term irstimmation is an

)2<d2—s)+d1 = (1- =) isan

2
increasing function (using differentiation), and also find tba((“*sl)'”) (o11) (%1) “isan increasing
function as previously. Consequentially, each term in the sum is an inmoge@sction and, by the
monotone convergence theorem [39], we can put the limit inside the sumurBef simplifying the

above expression as in the proof of Theorem 3.9 we eventually get:

increasing function with respect ta We discover tha(l — %1

1 1 & (=) —aayi
= — — S _ e 2 (a—1) e
8l a 222 (a—1) = 1 (—a (a—1)-e")
LetT (z) = 352, (_jj)!jf? . 27 be a Taylor expansion, where by substituting: —c- 2 - (a — 1) -

e~ we get the above expression. Similarly to the proof of Theorem 3.9, wibajet
T () = W () ~ ;W2 (2).

with convergence withifz| < e~! [12].
Since the functiory () = —a -2 - (a — 1) - e79* gets its minimum atv = a~*, where it equals
_2a=l) -1 and‘—Me—ll < e lforalla € [1,2], then for alla we can substitute = —a - 2 -

a a
(a — 1) - e~**. Hence, it is within the radius of convergencelofz).
Finally, for the case where = 1, thend, = 0 andd; = n. Therefore, the expression for the

expected maximum matching size is reducethte- (m (1 — %)n) Thus,

S T O T 1.<m—<m.(1—1> )) N
n—oo n n—oo n, m (6% (0%
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A.10 Proof of Corollary 4.6

We show thaty, is strictly monotonically increasing, thug, < 1 for 1 < a < 2, sincey, = 1 for
a = 2. This is shown by differentiating, with respect ta::

d'Ya_i;. “9a(a—1) e ala — ) 90 la—1) . e
do = 102 (a_1? (W (-2a(a—1) )+2a(a—1)) W (=2a(a—1) )

Both the first factor—m and the third factoi? (—2a (e — 1) - e~**) are negative. Thus, if the
second factor is positive theﬁﬁf is an increasing function with respectdae [1, 2).

If & > 0.5, then2a (a — 1) > 1, and sincéV (z) is minimized forz = —1 where it equals-1, the
second factor is positive. On the other hand, considerthiat.5. SincelV/ (—2a (a—1)- e*2a(“*1)) =
—2(a — 1)« andW (z) is an increasing function, then we have to show thad (a — 1) -e~2@~1) <
—2a (a —1)-e %, thatis,—2«a (a — 1) > —aa. The lastinequality can easily be shown fox a < 2.

0

A.11 Proof of Theorem 4.7
We compute the limit of{%2) asn — oc.
. B IU’(GP) I T 1 - n d n—d
Lt St o) V) R CH

Let X ~ Bin (n,p) be the random variable counting the number of vertice that choose 2 vertices
in R. By summing over three disjoint ranges of possible valuegdfpwe get

" 1
Y = lim Z Pr{X =ds}- -,u(GaHdQ) +
n— 00 =0 n P
3
lnp+nd|—1 1
Jim > . Pr{X =dp}- oo (Ga=1+dn?) *

do=|np—n1 |+1

. - 1
Jim 7 i PriX =dp}-—-n (Ga:1+dn2)
do=|np—n1|

By Chebyshev’s inequality we get that {|X —np| > ni np (1 — p)} < L. Sincep(1-p) <1,
n4

we get thatPr {|X — np| > n%} < L. By the fact that: - 4 (G
n4

and the third limits go to zero.
Since the function (G,,) is increasing with respect (this can be shown by a simple combinato-
rial argument), we get the following lower bound:

) < 1, we find that the first

a:l—&—dT2

1 1 an+n%J71 1
dim (1= ) (Galm_naH) <jm o3 Pe—dbon(Gon) =
n dg:\_npfanJJrl
as well as the following upper bound:

S

n—oo n—od

an+n%j71 1

T = lim Z N Pr {X = d2} ' TH <Ga=1+di> < lim 1 E T <Ga1+ I_np-&-n2j—1> ’
do=|np—n1 |+1 n

By the squeeze theorem, we get the claimed result. O
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A.12 Proof of Theorem 5.3

Similarly to the proof of Theorem 3.6, our proof is based on counting theagd number of vertices
in L that are not in some specific maximum matchingof G, based on the decomposition Gf
into its connected components. As in the proof of Theorem 3.6, we cortbiel@mumber of connected
components with exactly vertices inL andg = s + 1 vertices inR,, U R4, where we have to sum over
all possible combinationg, s + 1 — i), where: corresponds to the number of vertices taken fiBm
ands + 1 — i corresponds to those taken frary.

Thus, the expected number of connected component&iwith s vertices inL, i vertices inR,,
ands + 1 — i vertices inRy is given by:

(o) (7)) 0o ta)™

1= .
S i s+1—1 B-m

s+1—1 \"* 1 s s+1—1 \*
<1 (1—5)-m) ' <ﬁm) ' <(1—ﬁ) m) Phori~s

The above expression consists of the following factors (in order):
() choosing thes vertices inL;
(il) choosing the vertices inR,,;
(iii) choosing thes + 1 — i vertices inRy;
(iv) the probability that alf vertices inR,, may be connected only to the chosevertices inL;
(v) the probability that alk 4+ 1 — ¢ vertices inR; may be connected only to the chosevertices inlL;
(vi) the probability that alk vertices inL are only connected to thevertices inR,,;
(vii) the probability that alk vertices inL are only connected to the+ 1 — i vertices inR,; and,
(viii) the probability that all chosen vertices are connected.

Finally, adding the expressions for all possiBle andi’s and subtracting it fromn yields the
claimed result. O

A.13 Proof of Theorem 5.4

As in the proof of Theorem 3.9, we compute the Iimitfén@ asn — oo. We consider the case where
o= % and0 < g < 1 are fixed:

wGy 1 n Bom\ ((1=B)-m i\
Vﬁ_nh—{go n - nh_}rg()ﬂ-(m—é(g) l%( i )(s—i—l—z)'(l_ ) '

(1_ s+1—1 >"S ( i >S ( s+1—z s

(1—5)-m Fom) \a=p-m) oo
By substituting the expression fé; ;. ;_; from Theorem 5.3, and movin@) inside the second sum-
mation, we get:

v B () () g
N —i NS lstl=)-1 (g — D)+ (s —i)—1)!
Qfm)'(gj;»m)'(+l)lé é11)>rkigfl | U)
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By substitutingn = -, we get:

s (LR (I () ()

i S. s+1—1i S‘z’(”l*") (s+1—0) ! (2+(8—|—1—Z)—1)
ﬁ.n %'TL ( (8—|—1 ))H—(s—‘rl i)—1

[0}

As in the proof of Theorems 3.9 and 4.5, using the monotone convergesaesith [39], we can put
the limit inside the sum. By further simplifying the above expression with similarideretion to the
proofs of Theorems 3.9 and 4.5, we get eventually:

71 5_(1_[3)0054—1 (s+1—i)— (S—l—l—i)i_l a o s+1—i o Ca\t
R e

@ @ 5=0i=0

We switch the order of summation and get that {0, 1, ...} ands goes frommax{0,7 — 1} to co. We
also substitutg = s+ 1 —i(ors=1¢+ j — 1). Thus,

e S I - S O B

1.4l
@ =0 j=max{0,i—1} v

ji—1.5i—1

Let T (z,y) = Yjpis1 o z' - yJ. This expression has been previously found [16] to be the
multivariate formal power series about the paing, yo) = (0,0) of t (z,y) = t1 (x,y) + t2 (z,y) —
t1 (x,y)-ta (x,y) wheret, (z,y) andt, (z, y) are given by the following implicit multivariate functions:

w=t(z,y) e 2Oy =ty (w,y) - e 1Y) (5)

However, the mentioned range of convergence in [16] is insufficierddocase. (Note also that in [16]
the sums should be ovér- j > 1 and not ovet, 5 > 0.)

Since we compute the limit normalized expected maximum matching, then the expriessjg in
Equation (4) is bounded from below by 0, thus, by Equation (4) the dautenation is bounded from
above by a constant. On the other hand, all terms in the summation in Equateme @9sitive. Then,
if we look at the partial-sum series (by defining an arbitrary order), @eg increasing series which is
bounded. Thus, by the monotone convergence theorem the doubkcenerges for any valuesand
y satisfyingz = ﬁ 7B andy = % TR,

However, the multivariate functions in Equation (5) have multiple branchegh@ Lambertfd
function does [12]), that is, for a given andy there is more than one solution. We aim to find this
branch in terms of; andt¢,. We use the implicit function theorem to find the derivatives singularities.
The Jacobian is given by

J e t2(zy) —t; (z,y) - e—t2(zy)
N —t9 (:L‘, y) . e—tl(x,y) el (z,y) )

and itis invertible wherevdr/| # 0. Thus, there is a derivative singularity in caséx, y)-t2 (x,y) = 1,
which is the only solution. Therefore, as the given formal power serigjiration (4) is about the point
(zo,y0) = (0,0) (which corresponds ta = 0), wheret; = t, = 0, it converges to the branch where
t1 (x,y) - t2 (x,y) < 1 (note that both; (x,y) andts (x, y) are always positive). 0
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A.14 Proof of Theorem 6.1

We first establish a few lemmas before proving the result. As before, webgtaonsidering a deter-
ministic bipartite graptd = (Ly + Ry, Ex) with degreed of each vertex inl g, where|Ly| = s and
|Re| = q.

LemmaA.l. If (d—1)-s < gq—2,thenH is not connected.

Proof. As in the proof of Lemma 3.1, the proof follows by induction enFor s = 1, there ared
edges in the graph and therefore every graph withd + 1 is not connected. Assuming that the claim
holds up untils = s’, we next prove that it holds for any bipartite grapti such thalLy/| = s + 1
and|Ry/| > (d—1) - (s + 1) + 2. Assume towards a contradiction that there is a grEphvhich is
connected.

We first show that there are— 1 verticesv,.,, v,,, ..., v,, , in Ry, all of a degred such that they
are connected to the same verigxe Ry: The sum of right-side vertex degreeds (s’ + 1). Also,
since the graph is connected there are no right-side vertices with dedrae implies that there are at
least(d — 2) - (s’ + 1) + 2 vertices of degree 1, thus there exists a vettex Ry as claimed.

By the induction hypothesis, the graph inducedy \ {v,} andRg \ {vr,, Vry, ..., vy, , } IS NOL
connected, which implies that it has at least two connected componentg., in is connected to all
verticesv,,, vy,, ..., vr,_,. Since its degree ig it can be connected only to one of these components.
This implies thatH’ is not connected as well, and the claim follows. O

LemmaA.2. If H isconnected an@d — 1) - s = ¢ — 1 thenu (H) = s.

Proof. Assume towards a contradiction thatH) < s, and consider some maximum matchihf
Letv, € Ly be avertex that is not in the maximum matchitg andv,, , v,,, ..., v, , be the vertices
in R (which are not necessarily distinct) that are connected toAll vertices v, , vy,, ..., v, , are
connected also to another vertexiigy, otherwisev, was in the maximum matchingy .

Consider the bipartite grapi = <£H + Ry, EH> which is given by removing, from H. Since

the right-side vertices,, v,,,...,v,, , are also connected to the other left-side vertices (exagpt
the bipartite grapH{ is connected. However, we get tﬁmH’ =s—1 and‘f{H‘ =(d—-1)-s5s+1,
which contradicts with Lemma A.1. O

We note that in contrast to Lemma 3.2, the corresponding proposition is mofaird > 2; that
is, if H is connected and < ¢, then the maximum matching size is not necessatrilyAs a counter
example, consider the case where- 3 ands = ¢ = 3, where two left-side vertices choose the same
single right-side vertex (using all their 3 choices), and the other left-&@dex chooses all 3 right-side
vertices. The resulting bipartite graph is clearly connected, but the maximuahimg size is only 2
(only one of the first two left-vertices can be in the matching).

LemmaA3.If (d—1)-s=q— 1thenH is connected if and only if it is a tree.

Proof. The proof consists of the exact same construcfibas in the proof of Lemma 3.4, where we
eventually get a contradiction with Lemma A.1. O

Lemma A.4. The numbef’? of connected bipartite graphd whose{Ly| = s and|Ry| = 2(d — 1) -

s+1isTd = W (d—1) - s +1)°7%

Proof. By Lemma A.3, we have to count the number of bipartite trees over the two disgsit; and

Ry of sizesand(d —1)---+ 1. SinceH is a tree, then there are no cycles. Consequently, each one
of the vertices inL y is connected t@ distinct vertices inR ;. Moreover, no two vertices ih ; share
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Figure 1: the Lambert¥ function

more than 1 vertex iR y. For each vertex, € Ly, let S, be the set of thd right-side vertices that,

is connected to and also let the cyclg, be a cycle that consists of thievertices ofS,,.

Consider the grapif = ( Ry, Ey ), which is given by connecting each cydg, to C,, us-
ing a common vertex, if and only if v, is connected to bothy,, andwv,,. The resulting graph
H is a Husimi graph ovefd — 1) - s + 1 vertices, where the number of such (labeled) graphs is
G (A= 1) -5+ 1) [7,22].

Finally, each seb, is determined by the (labeled) vertexity,. Thus, we multiply bys! the above
expression. O

We are now able to prove the result.

Proof. [of Theorem 6.1] LetM be a maximum matching @¥. Similarly to the proof of Theorem 3.6,
the proof is based on counting the expected number of verticB<lvat are not part ofi/, and on the
decomposition ot~ into its connected components.

We count the expected number of connected componentsswefhrside vertices angd = (d — 1) -
s+1 right-side vertices. By Lemma A.2, the maximum matching size of each suchaedremponent
is exactlys. Thus, there are — s right-side vertices that are not .

Let H be a bipartite graptH = (Ly + Ry, Ey), with degreed for all vertices inLy, where
|Ly| = sand|Rg| = q. The probabilityPs that H is connected is given b¥, = (d!)d:Tg.

The remainder of the proof is similar to the proof of Theorem 3.6. ! O

B Evaluation

B.1 The Lambert-IW Function

The LambertW function, usually denoted by’ (-), is given by the following implicit representation:
=W (z) eV,

wherez is a complex number [12].

For real valued arguments, i.e.is real valuedJ¥ (z) has two real-valued branches: the principal
branch, denoted b/ (-) and the branch?’_; (-). Figure 1 shows the two real-valued branches. For
instanceWVy (—e~!) = W_,-1 = —1 andW, (0) = 0.
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Figure 3: Limit expected maximum matching size for various values of dgatbrmalized byn

B.2 Expected Maximum Matching Size Withd = 2

Figure 2 shows the expected maximum matching size normalizedfby various values of andm.

We show the expected maximum matching size both via our analytical model fieordm 3.6 and via
simulations. For each instance ofandm, we randomized 10000 bipartite graphs. The results fairly
confirm that our model is accurate, and also show the convergence explected maximum matching
size to its limit. A simple evaluation appears in the following example.

Example B.1. In casen = m = 2 (andd = 2), the expected maximum matching sizg (67) = % =

1.875. This simple result can be justified as follows: In all cases the maximum imgsilze is 2, except

for the two cases of maximum matching of size 1, where all 4 edges arected to a specific vertex in

R. Each such case occurs with probabil@)4 Henceu (G)=2—- L — L =1
: : H = 616 8"

Figure 3 shows the expected maximum matching size normalizedds/found in Theorem 3.9,
for various values of load., both via our analytical model and via simulations. The simulations were
performed usingrn = 1000 andn = « - m. For each value ofi, we randomized 100 bipartite graphs.
The results fairly confirm that our model is accurate.

We conclude by the following simple example:

Example B.2. In casea = 1, that isn. = m, the normalized limit expected maximum matching size is

N=1+ % W (_2 . 6—2) + iWQ (_2 - 6—2) ~ 0.8381.

22



0.95

0.9

0.85

T T
©
-0~ © o ©-0-0 ¢

o 000 O O U 9T

k.

.
¥

_x ¥ i

> 0.8 L X
0751 —% O simulation (o =0.1)| |
’ . * —— model (a =0.1)
L 4 x  simulation (o = 0.5)| |
0.7 o *
.- * model (a = 0.5)
065} 4-% *  simulation (@ =1) |A
T — — —model (a =1)
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Figure 4: Limit expected maximum matching size for various values @fida, normalized byn

11

O simulation (o = 0.5)
— - — model (a = 0.5)

X simulation (o = 1)
model (a = 1)

o~ @ ©-0-C 6 -0-0-06

Figure 5: Limit expected maximum matching size for various valugs afid«, normalized byn

B.3 Expected Maximum Matching Size Withd, < 2

Figure 4 shows the normalized limit expected maximum matching size, for varaussvof loady
and average number of choicesboth via our analytical model (from Theorem 3.9) as well as via
simulations. The simulations were performed usimg= 1000 andn = « - m, where for each instance
of the simulation we randomized 100 bipartite graphs. The results fairly oonifiat our model is
accurate.

B.4 Expected Maximum Matching Size With Static Partition

Figure 5 shows the limit expected maximum matching size normalized foy various values of load
and partitions, both via our analytical model (from Theorem 5.4) and via simulations. thelations
were performed using: = 1000 andn = « - m. For each pair of values @i and 3, we randomized
100 bipartite graphs. The results fairly confirm that our model is accurate

As expected, the limit expected maximum matching size is symmetric ardurd0.5. In case
a = 0.5andg < 0.5, while it seems that the normalized limit expected maximum matching size is
1, itis not the case. For instance, in case- 0.5 and3 = 0.45, we get thatl — v3 ~ 1.675 - 1077,
However, there are cases where imbalance in the partition sizes doeducys, as shown for instance
in Corollary 5.6.
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B.5 Expected Maximum Matching Size Withd > 2

We evaluate the upper bound found for the expected matching size Erhedf). Figure 6 shows
our upper bound as well as simulation results for various values of theeruohlchoicesi. We took

n = m = 100, while for each instance af, we randomized0° bipartite graphs. In the case éf= 2,

our upper bound matches the exact expression found in Theorem@tGwmatches the simulation
results. In addition, we can compare simulation results for higher valuésadth our bounds. For
instance, in the case af = 3 the normalized expected maximum matching size via the simulation is
0.9402, while our upper bound i8.9508. In cased = 4, we get a simulation value 09795, while the
corresponding upper bound(d9820.
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