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Abstract—To enable direct access to a memory word based on
its index, memories make use of fixed-width arrays, in which a
fixed number of bits is allocated for the representation of each
data entry. In this paper we consider the problem of encoding data
entries of two fields, drawn independently according to known and
generally different distributions. Our goal is to find two prefix
codes for the two fields, that jointly maximize the probability that
the total length of an encoded data entry is within a fixed given
width. We study this probability and develop upper and lower
bounds. We also show how to find an optimal code for the second
field given a fixed code for the first field.

I. INTRODUCTION

Fixed-width memories are particularly appealing for net-
working applications. They enable a direct access to a memory
word regardless of its index. This property is mandatory, for in-
stance, in hash-based implementations of forwarding tables [1].

We consider the encoding of data entries with d = 2 fields,
drawn independently according to two known distributions,
within a bound of L bits corresponding to the fixed width of
a memory word. We would like to find two prefix codes for
the two fields, so as to maximize the probability that the total
length of the two codewords in the encoding of a data entry
is at most L bits. Unfortunately, we will show that popular
techniques for data compression such as Huffman coding [2]
are not necessarily optimal for this metric.

Consider for instance a data entry with two fields, such that
the value of the first field is among four possible elements
{a, b, c, d}, and the second is one of the two elements {x, y}.
As summarized in Table I.(A)-(B), these possible values appear
with different probabilities, and the values of the two fields are
drawn independently. For instance, the first field has the value
a w.p. (with probability) 0.4, and b w.p. 0.3. We encode the two
fields using two prefix codes σ1, σ2. As shown in Table I.(C),
the selection of these codes determines the obtained width for
the 4 · 2 = 8 possible data entries. Here, the minimal obtained
width of an encoded data entry is 2 bits, and the maximal width
is 4 bits. If the allowed fixed-width is L = 3, only four of the
data entries can be encoded successfully (presented with

√
),

while four others will have to be stored in a different memory
hierarchy and will result in a slower access time. Accordingly,
we say that the obtained success probability for this encoding
scheme CD = (σ1, σ2) is the sum of probabilities for the
successfully-encoded entries, i.e.

Psuccess(L = 3, CD) = 0.24 + 0.16 + 0.09 + 0.06 = 0.55.

Recently, an encoding scheme that minimizes the maximal
encoding width of a given set of data entries was suggested

(A) First field with code σ1

Element Prob. codeword
a 0.4 0
b 0.3 110
c 0.15 10
d 0.15 111

(B) Second field with code σ2

Element Prob. codeword
x 0.6 0
y 0.4 1

(C) Possible entries encoded by the encoding scheme CD = (σ1, σ2)

Entry Prob. Encoding Width (ℓ) ℓ ≤ (L = 3)
(a,x) 0.24 0 0 2

√

(a,y) 0.16 0 1 2
√

(b,x) 0.18 110 0 4 -
(b,y) 0.12 110 1 4 -
(c,x) 0.09 10 0 3

√

(c,y) 0.06 10 1 3
√

(d,x) 0.09 111 0 4 -
(d,y) 0.06 111 1 4 -

TABLE I
EXAMPLE OF ENCODING SCHEME. (A) AND (B) ILLUSTRATE THE ENTRY

DISTRIBUTION OF TWO FIELDS, AND THEIR RESPECTIVE CODES σ1 AND σ2 .
(C) SHOWS THE RESULTING ENCODING SCHEME CD = (σ1, σ2) , USING

THE CONCATENATION OF THE CORRESPONDING TWO CODEWORDS FOR THE
TWO FIELDS. (SPACES ARE PRESENTED FOR SIMPLICITY AND DO NOT

EXIST IN PRACTICE.) IN THIS EXAMPLE, FOUR POSSIBLE DATA ENTRIES
ARE ENCODED SUCCESSFULLY WITHIN L = 3 BITS, AND

Psuccess(L = 3, CD) = 0.24 + 0.16 + 0.09 + 0.06 = 0.55.

in [3]. Unfortunately, the fixed width of a memory array is
typically predetermined by its manufacturer and cannot be
changed dynamically by the user. Furthermore, the worst-case
approach of [3] may be too stringent. Therefore, the new
probabilistic model we consider here of maximizing the success
probability for a fixed L is a more realistic one. We note
that the occasional failures to meet the fixed width can easily
be accommodated in practice by sending the data entry to a
slower (e.g. DRAM) memory instead of the main (e.g. SRAM)
memory. A high success probability will guarantee good access
time on average.

The case of d = 2 fields is motivated by the popular L2
MAC tables that contain entries of two fields. The first field
describes the Target Port, while the second is an aggregation
of other attributes. Combining the distributions of the two fields
into their product distribution is not feasible in networking
applications, because it will require maintaining dictionaries of
exorbitant sizes. The problem of fixed-width prefix encoding is
related to the problem of compression with low probability of
buffer overflow [4], [5]. However, to the best of our knowledge
the case of multiple distributions is not covered by the prior
work. Due to space limitations, we do not discuss in this study
the more general case of more than d = 2 fields.



II. MODEL AND PROBLEM FORMULATION

A. Terminology

We start by describing the terminology we use throughout
this study. For short, we refer to a data entry simply as an
entry.

Definition 1 (Entry Distribution). An entry distribution D =
((S1, P1), (S2, P2)) =

(
({s1,1, . . . , s1,n1}, (p1,1, . . . , p1,n1)),

({s2,1, . . . , s2,n2}, (p2,1, . . . , p2,n2))
)

is characterized by two
(ordered) sets of elements with their corresponding vectors of
positive appearance probabilities. An entry (a1, a2) has two
fields drawn randomly and independently according to the dis-
tribution D s.t. Pr (a1 = s1,i) = p1,i and Pr (a2 = s2,i) = p2,i

with p1,i, p2,i > 0. The numbers of possible elements in the
first and second field of an entry are n1 = |S1| and n2 = |S2|,
respectively.

Example 1. The entry distribution of the two fields illustrated
in Table I, can be summarized as D = ((S1, P1), (S2, P2)) =(
({a, b, c, d}, (0.4, 0.3, 0.15, 0.15)), ({x, y}, (0.6, 0.4))

)
.

Definition 2 (Prefix Code). For a set of elements S, a code σ
is an injective mapping σ : S → B, where B is a set of binary
codewords of size |B| = |S|. A code is called a prefix code if
no binary codeword in B is a prefix (start) of any other binary
codeword in B.

Definition 3 (Encoding Scheme). An encoding scheme CD of
an entry distribution D is a pair of two prefix codes CD =
(σ1, σ2). That is, each σj is a prefix code of the set of elements
Sj in the first or the second field.

Our main motivation for using prefix codes is the simplicity
they enable in the representation of encoded entries in the mem-
ory. For each encoded entry, we simply keep the concatenation
of the two codewords for each of its fields. It is easy to verify
that the properties of the prefix codes (and indeed only of the
first of them) guarantee that different entries yield different
(concatenated) encodings.

For a binary string x, let ℓ(x) denote the length in bits of
x. With an encoding scheme CD = (σ1, σ2), we say that the
encoding width of an entry (a1, a2) is ℓ(σ1(a1)) + ℓ(σ2(a2)).

Next, we define the encoding width bound. With this bound,
we can distinguish between different encoding schemes based
on their obtained encoding widths for the possible entries.

Definition 4 (Encoding Width Bound). Given an encoding
scheme CD = (σ1, σ2) and an encoding width bound of L
bits, we say that an entry (a1, a2) is encoded successfully if its
encoding width is not larger than the encoding width bound,
i.e.
(
ℓ(σ1(a1)) + ℓ(σ2(a2))

)
≤ L.

B. Optimal Encoding Scheme for an Entry Distribution

We would like now to define the main problem that we
address in this study. Given an entry distribution D =
((S1, P1), (S2, P2)) and an encoding width bound L, we would
like to find an encoding scheme CD = (σ1, σ2) that maximizes

the probability that an encoding of an arbitrary entry would be
successful. For the scheme CD, we denote this probability by
Psuccess(L,CD).

We remind that we limit each of the two codes σ1, σ2

to be prefix. Therefore, the lengths of the binary codewords
in each of the codes must satisfy Kraft’s inequality, i.e.∑

a∈Sj
2−ℓ(σj(a)) ≤ 1 (for j ∈ [1, 2]). In addition, these lengths

are clearly positive integers.
We can now express the problem as the following optimiza-

tion problem. Here, I(·) is the indicator function that takes the
value of 1 if the condition that it receives as a parameter is
satisfied, and 0 otherwise.

max Psuccess =
n1∑
i=1

n2∑
j=1

p1,i · p2,j · I

(
ℓ(σ1(s1,i)) + ℓ(σ2(s2,j)) ≤ L

)

s.t.
∑
a∈Sj

2−ℓ(σj(a)) ≤ 1,∀j ∈ [1, 2] (1a)

ℓ(σj(a)) > 0 ∀j ∈ [1, 2],∀a ∈ Sj (1b)
ℓ(σj(a)) ∈ Z ∀j ∈ [1, 2],∀a ∈ Sj . (1c)

Assuming an entry distribution D = ((S1, P1), (S2, P2)),
we denote by OPT (L) the optimal success probability, i.e. the
maximal possible value of Psuccess that can be obtained by
any encoding scheme CD as a function of a positive integer
encoding width bound L. Formally,

OPT (L) = max
CD=(σ1,σ2)

Psuccess(L, CD). (2)

We say that an encoding scheme CD is optimal for a given
L iff it satisfies Psuccess(L,CD) = OPT (L).

III. OBSERVATIONS

In this section, we suggest some basic observations regarding
our problem. For the sake of simplicity, throughout the paper
we assume that each field can hold the same number of n =
n1 = n2 = 2W possible elements. We also assume that for
j ∈ [1, 2], the elements Sj = {sj,1, . . . , sj,nj} are ordered in a
non-increasing order of their probabilities such that pj,i1 ≥ pj,i2

if i1 < i2.
For any entry distribution D = ((S1, P1), (S2, P2)), the

optimal success probability OPT (L) ∈ [0, 1] is clearly a
non-decreasing function of the parameter L. Let the encoding
scheme CF = (σF

1 , σF
2 ) be composed of two fixed-length

codes, such that both encode each of the 2W elements of S1, S2

by a codeword of W bits.

Property 1. The optimal success probability satisfies
(i) For L ≥ 2W OPT (L) = 1, and for L < 2W

OPT (L) ≤ 1 −

(
2W∑

i=2W−1

p1,i

)
·

(
2W∑

i=2W−1

p2,i

)
.

(ii) If W ≥ 2, OPT (L = 2) = p1,1 · p2,1.



Proof: (i) OPT (L) = 1 for L ≥ 2W can be proved
by the encoding scheme CF , in which the obtained encoding
width of any entry is clearly W + W = 2W . Thus 1 =
Psuccess(L,CF ) ≤ OPT (L). In addition, by Kraft’s inequality,
in any encoding scheme CD, at least (2W−1+1) elements in S1

and at least (2W−1 +1) in S2 are encoded with at least W bits.
In the best case, these longer codewords will be assigned to the
lowest-probability elements. If L < 2W an entry composed of
two such elements is not encoded successfully. This gives the
second part of (i).

(ii) If L = 2, let’s show that there is at most a single
entry that can be encoded successfully. A legally encoded entry
must be an entry composed of a pair of elements (one from
S1 and another from S2), where each element is encoded
within a single bit by σ1 and σ2. By Kraft’s inequality, in
both codes, there must be at most one such element when
W ≥ 2. The maximal success probability is obtained in an
encoding scheme CD that encodes in a single bit the most
common elements in both sets s1,1 ∈ S1, s2,1 ∈ S2. Then,
OPT (2) = Psuccess(L,CD) = p1,1 · p2,1.

The encoding scheme CF satisfies Psuccess(L,CF ) = 0 for
L < 2W . Then, based on the proof of the last property we can
immediately observe the following.

Property 2. For W ≥ 2, the encoding scheme CF composed
of two fixed-length codes with codewords of W bits is optimal
for L ≥ 2W, and is not optimal for L ∈ [2, 2W − 1].

The next lemma suggests the intuitive result that we should
prefer to use shorter codewords for elements that appear more
often. It is also interesting because it reduces the search space
for the optimal code.

Definition 5 (Monotone Coding). An encoding scheme CD =
(σ1, σ2) of entry distribution D = ((S1, P1), (S2, P2)) is called
monotone if for j ∈ [1, 2], i1 < i2 implies that ℓ(σj(sj,i1)) ≤
ℓ(σj(sj,i2)).

Lemma 1. For any entry distribution D = ((S1, P1), (S2, P2))
and any L ≥ 1, there exists a monotone optimal encoding
scheme.

Proof: We show how to build an optimal monotone
encoding scheme based on any optimal encoding scheme
CD = (σ1, σ2). Consider two arbitrary indices i1, i2 that satisfy
i1 < i2. Then necessarily p1,i1 ≥ p1,i2 . If ℓ(σ1(s1,i1)) >
ℓ(σ1(s1,i2)), we can replace σ1 by a new code obtained by per-
muting the two codewords of s1,i1 , s1,i2 . With this change, an
entry (a1 = s1,i1 , a2) is encoded successfully after the change
only if the entry (a1 = s1,i2 , a2) was encoded successfully in
CD (and vice versa). Likewise, if before the change, the first of
them was encoded successfully then also the second. Then, we
can deduce that such a change cannot decrease Psuccess and
the result follows. We do the same for σ2 and conclude.

We next prove that the success probability of encodings with
short average code length can be bounded from below. This
will be shown by a refinement of the Markov inequality. For
D = ((S1, P1), (S2, P2)), CD = (σ1, σ2) let E(CD) =

∑n1
i=1

∑n2
j=1 p1,i · p2,j ·

(
ℓ(σ1(s1,i)) + ℓ(σ2(s2,j))

)
=∑n1

i=1 p1,i · ℓ(σ1(s1,i)) +
∑n2

j=1 p2,j · ℓ(σ2(s2,j)).

Property 3. The encoding scheme CD = (σ1, σ2) for D =
((S1, P1), (S2, P2)) with an average encoding width of E(CD)
satisfies Psuccess(L,CD) ≥ L+1−E(CD)

L−1 = 1 − E(CD)−2
L−1 .

Proof: An unsuccessfully encoded entry has a width of at
least (L+1) bits while the width of any encoded entry is at least
2 bits. We then have that E(CD) ≥

(
(1 − Psuccess(L,CD)) ·

(L + 1) + Psuccess(L,CD) · 2
)

. The result then follows.
We now consider a special option for the encoding scheme.

The scheme CH
D = (σ1, σ2) is constructed s.t. σ1 is a Huffman

code of S1 (with its probability vector P1) and σ2 is a Huffman
code of S2 [2]. A Huffman code minimizes the expected length
of a codeword. Unfortunately, as shown in the next example,
an encoding scheme CH

D composed of two Huffman codes (for
S1, S2) is not necessarily optimal.

Example 2. As illustrated in Fig. 1 and Fig. 2 , let n1 = n2 =
4 = 2W for W = 2. Likewise, let D = ((S1, P1), (S2, P2)) =(
({s1,1, s1,2, s1,3, s1,4}, (p1,1 = 0.9, p1,2 = 0.06, p1,3 =

0.03, p1,4 = 0.01)), ({s2,1, s2,2, s2,3, s2,4}, (p2,1 = 0.5, p2,2 =
0.2, p2,3 = 0.15, p2,4 = 0.15))

)
and let the encoding width

bound be L = 3.
As shown in Fig. 1, let σ1, σ2 be Huffman codes of S1, S2

and let CH
D = (σ1, σ2) be the encoding scheme composed

of these codes. Since (pj,3 + pj,4) < pj,1 and pj,2 < pj,1

for j ∈ [1, 2] then necessarily σj satisfies ℓ(σj(sj,1)) =
1, ℓ(σj(sj,2)) = 2, ℓ(σj(sj,3)) = 3, ℓ(σj(sj,4)) = 3. To
calculate Psuccess(L,CH

D ), we can see that there are 3 entries
that are encoded successfully within L = 3 bits: (s1,1, s2,1),
(s1,1, s2,2), (s1,2, s2,1). Accordingly, Psuccess(L,CH

D ) = 0.9 ·
0.5 + 0.9 · 0.2 + 0.06 · 0.5 = 0.66.

A second encoding scheme CD = (σ′
1, σ

′
2) is presented in

Fig. 2. This scheme satisfies ℓ(σ′
1(s1,1)) = 1, ℓ(σ′

1(s1,2)) =
2, ℓ(σ′

1(s1,3)) = 3, ℓ(σ′
1(s1,4)) = 3 (as in CH

D ) while
ℓ(σ′

2(s2,1)) = ℓ(σ′
2(s2,2)) = ℓ(σ′

2(s2,3)) = ℓ(σ′
2(s2,4)) =

2. Here, 4 entries can be encoded successfully: (s1,1, s2,1),
(s1,1, s2,2), (s1,1, s2,3), (s1,1, s2,4) and Psuccess(L,CD) =
0.9 · 0.5 + 0.9 · 0.2 + 0.9 · 0.15 + 0.9 · 0.15 = 0.9 > 0.66 =
Psuccess(L,CH

D ).

Although the encoding scheme CH
D is not necessar-

ily optimal, by Property 3 it satisfies Psuccess(L,CH
D ) ≥

L+1−E(CH
D )

L−1 = 1 − E(CH
D )−2

L−1 where E(CH
D ) is the minimal

possible average encoding width among all possible encoding
schemes.

IV. BOUNDS ON THE OPTIMAL SUCCESS PROBABILITY

In this section we present upper and lower bounds on the
optimal success probability for a given entry distribution D =
((S1, P1), (S2, P2)) and an encoding width bound of L bits.

We start with a lower bound on OPT (L). We consider
several encoding schemes for D and have as a lower bound
the maximal success probability achieved in one of these



(a) σ1 (b) σ2

Fig. 1. Illustration of the encoding scheme CH
D = (σ1, σ2) composed of

two Huffman codes σ1 of S1 = {s1,1, s1,2, s1,3, s1,4} (presented in (a) with
probabilities (0.9,0.06,0.03,0.01)) and σ2 of S2 = {s2,1, s2,2, s2,3, s2,4} (in
(b) with probabilities (0.5,0.2,0.15,0.15)). For instance, σ1(s1,1) = 0 and
σ2(s2,3) = 110. CH

D satisfies Psuccess(L = 3, CH
D ) = 0.66.

(a) σ′
1 (b) σ′

2

Fig. 2. Illustration of a second encoding scheme CD = (σ′
1, σ′

2) with an
improved success probability Psuccess(L = 3, CD) = 0.9.

schemes. In each scheme, we divide the L bits between the
two fields into ℓ and (L − ℓ) bits. Then, in all successfully
encoded entries, the first field is encoded in ℓ bits while the
second in (L − ℓ) bits. We consider values of ℓ such that
ℓ, (L − ℓ) are both positive and are not greater than W , i.e.
ℓ ∈ [a, b] = [max(1, L−W ), min(L−1,W )]. The lower bound
is presented in the following theorem.

Theorem 2. The optimal success probability satisfies

OPT (L) ≥ max
ℓ∈[a,b]

((
2ℓ−1∑
i=1

p1,i

)
·

(
2L−ℓ−1∑

i=1

p2,i

))
. (3)

Proof: For a given ℓ, we consider a code σ1 of S1 in
which the first n1,1 = 2ℓ − 1 elements (with larger probability)
are encoded within ℓ bits while the last n1,2 = n − n1,1

elements are encoded in (ℓ + ⌈log2(n1,2)⌉) bits. We can see
that n1,1 ·2−ℓ +n1,2 ·2−(ℓ+⌈log2(n1,2)⌉) = (2ℓ −1) ·2−ℓ +n1,2 ·
2−(ℓ+⌈log2(n1,2)⌉) ≤ 1 − 2−ℓ + 2−ℓ = 1, and as a consequence
such a prefix code exists. We similarly encode all the first
n2,1 = 2(L−ℓ) − 1 elements of S2 in (L− ℓ) bits and the other
n2,2 = n−n2,1 elements in ((L−ℓ)+⌈log2(n2,2)⌉) bits. Then,
any entry composed of two elements from the first n1,1, n2,1

elements in S1, S2 has an encoding width of ℓ + (L − ℓ) = L
bits and as a result is encoded successfully.

Next, we discuss an upper bound on OPT (L). By Lemma 1
it is enough to show this only for monotone encoding schemes.
We use the notations ℓ1,i = ℓ(σ1(s1,i)), ℓ2,i = ℓ(σ2(s2,i)) for
i ∈ [1, n] and have ℓ1,i ≤ ℓ1,j , ℓ2,i ≤ ℓ2,j if i < j.

By Kraft’s inequality, for ℓ ∈ [1, W − 1], at least one of
the first 2ℓ elements in S1, S2 is encoded with at least ℓ + 1

bits, because there are additional elements that still need to
be encoded. Based on this observation and the assumed order
of the codeword lengths, we can deduce lower bounds on
these lengths. For instance, if W ≥ 3, we cannot encode
the first two elements in a single bit, and one of the first
four elements must be encoded with at least three bits. Thus
ℓj,2 ≥ 2, ℓj,4 ≥ 3 for j ∈ [1, 2] since we consider a monotone
encoding scheme and accordingly ℓj,i ≥ 2 for i ∈ [2, 3] and
ℓj,i ≥ 3 for i ∈ [4, 8]. More generally, we can show that
ℓj,i ≥

⌈
log2(i + I(i < 2W ))

⌉
for i ∈ [1, n = 2W ]. Based on

this lower bound, we denote by f(ℓ) for ℓ ∈ [1,W ] the index
of the first element that must be encoded in at least ℓ bits, i.e.

f(ℓ) = mini∈[1,n]

(⌈
log2(i + I(i < 2W ))

⌉
≥ ℓ

)
= 2ℓ−1. Let

[a, b] = [max(1, L + 1 − W ), min(L,W )]. We are now ready
to present the bound.

Theorem 3. The optimal success probability satisfies

OPT (L) ≤ min
ℓ∈[a,b]

(
1 −

(
2W∑

i=2ℓ−1

p1,i

)
·

(
2W∑

i=2L−ℓ

p2,i

))
.

Proof: For ℓ ∈ [1, L] that satisfies ℓ, (L+1− ℓ) ≤ W , the
encoding width of an entry composed of two elements encoded
in at least ℓ and (L+1−ℓ) bits, respectively, is at least ℓ+(L+
1 − ℓ) = L + 1 bits. Therefore, any such entry is not encoded
successfully and cannot contribute to the success probability of
a monotone encoding scheme. By Lemma 1, we can generalize
the result to any encoding scheme, and the result follows.

V. OPTIMAL CONDITIONAL CODE OF THE SECOND FIELD

The ultimate goal of this work is an algorithm that finds for a
general value of L, an optimal two-field encoding scheme that
jointly maximizes the success probability. An intermediate step
toward this goal is an algorithm that finds the optimal encoding
of one field, conditioned on the encoding of the other field.
Such an algorithm is the topic of this section. This algorithm
has a value in its own right (e.g., when one field encoding is
set by external constraints), and also as a likely component in
a future optimal two-field algorithm.

Finding an optimal encoding scheme when L ≥ 2W is easy.
By Property 2, the encoding scheme CF is an example for
such a scheme. In this section we consider the case where
L ≤ (2W − 1). Given a code σ1 = σ of S1, we show a
polynomial-time algorithm that finds an optimal conditional
code σ2 of the set S2. This code σ2 maximizes the probability
Psuccess(L,CD = (σ1, σ2)) for σ1 = σ. Then, we also say that
CD = (σ1, σ2) is an optimal conditional encoding scheme.

We first show the following lemma regarding the maximal
length of a codeword in an optimal conditional code. Although
the mentioned bound is not necessarily tight, it is used to limit
the complexity of the suggested algorithm and its exact value
is not required to show the algorithm correctness.

Lemma 4. For an entry distribution D = ((S1, P1), (S2, P2))
with W ≥ 2, an encoding width bound L ∈ [2, 2W − 1] and a
code σ1 = σ of S1, there exists an optimal conditional code σ2

of S2 that encodes all of its n2 elements in at most 3W bits.



Proof Outline: Given an optimal conditional encoding
scheme CD = (σ1 = σ, σ2), we consider elements of S2 that
obtain together with every element of S1, a width longer than
L. We replace σ2 by a new code that encodes all these elements
by 3W bits. We show that this new code still preserves Kraft’s
inequality and is also an optimal conditional code.

An optimal conditional code σ2 with the property of
Lemma 4 satisfies that (∀a ∈ S2)(ℓ(σ2(a)) ≤ 3W ) and
2−ℓ(σ2(a)) is a multiple of 2−3W . We define the weight of each
codeword of length ℓ0 as the number of units of 2−3W in 2−ℓ0 ,
denoted by Nℓ0 = 2−ℓ0/2−3W = 23W−ℓ0 . Clearly, in order to
satisfy Kraft’s inequality, the sum of weights of the codewords
of σ2 should be at most 23W = n3.

We consider entries composed of an arbitrary first element
from S1 and a second element from the first k elements in S2

(for k ∈ [0, n]). For N ∈ [0, 23W ] and k ∈ [0, n], we denote by
F (N, k) the maximal sum of probabilities of such entries that
can be encoded successfully by a code σ2 such that the sum of
its weights for the first k codewords is at most N . Formally,

F (N, k) = max
σ2:
(∑k

j=1 Nℓ(σ2(s2,j))≤N
)
(

n1∑
i=1

k∑
j=1

p1,i · p2,j

· I
(

ℓ(σ1(s1,i)) + ℓ(σ2(s2,j)) ≤ L

))
. (4)

We would like now to present a recursive formula for
F (N, k). Earlier, we set the values of F (N, k) for the initial
case of k = 0 as F (N, k = 0) = 0 for N ≥ 0 and
F (N, k = 0) = −∞ for N < 0. We can now present the
formula of F (N, k) that lets us calculate its values for k = k0

based on the values of the function for k = (k0 − 1).

Lemma 5. The function F (N, k) satisfies for N ≥ 0, k ≥ 1

F (N, k) = max
ℓ0∈[1,3W ]

(
F (N − Nℓ0 , k − 1)

+p2,k ·
n1∑
i=1

p1,i · I
(

ℓ(σ1(s1,i)) + ℓ0 ≤ L

))
. (5)

Proof: To calculate F (N, k), we consider all possible
lengths of the codeword of s2,k which is the kth element in S2.
A codeword length of ℓ0 reduces the available sum of weights
for the first (k − 1) elements by Nℓ0 = 23W−ℓ0 . Likewise, an
entry (s1,i, s2,k) contributes to the success probability the value
p1,i · p2,k if its encoding width (given ℓ0) is at most L.

The following theorem relates the maximal success probabil-
ity of a conditional encoding scheme and the function F (N, k).

Theorem 6. The maximal success probability of a conditional
encoding scheme is given by

max
σ2

Psuccess(L,CD = (σ1 = σ, σ2)) = F (N = 23W , k = n).

Proof: As indicated earlier, to satisfy Kraft’s inequality we
should limit the sum of weights N to 23W = n3. In addition,
in the general case, the success probability is calculated based
on entries that can include in the second field any one of the
n elements of S2.

Finally, we can present a dynamic-programming algorithm
that finds the optimal conditional code. We denote by Q(N, k)
(again for N ∈ [0, 23W ], k ∈ [0, n]) a vector of length k that
contains the codeword lengths for the first k elements in a code
that achieves F (N, k) and satisfies the constraint according to
the meaning of N . We start by setting the values of F (N, k)
for k = 0 as described above. For these values, we also set
Q(N, k) as an empty vector.

Then, we perform n steps, and in the kth step (for k ∈
[1, n]) we calculate F (N, k) for the current value of k and
N ∈ [0, 23W = n3]. To calculate each value of F (N, k), we
rely on Lemma 5 and consider 3W possible lengths of the
kth codeword. If the maximal value is achieved when using
the length of ℓ0, we calculate Q(N, k) by adding ℓ0 (as an
additional last element) to the vector Q(N − Nℓ0 , k − 1).
By Theorem 6 the optimal success probability is given by
F (N = (23W = n3), k = n). Likewise, the codeword lengths
of the optimal conditional code can be found in the vector
Q(N = (23W = n3), k = n). Given the codeword lengths, we
can easily find a code σ2 that obtains these lengths.

The next property summarizes the time complexity of the
suggested algorithm. The complexity is polynomial in the
number of possible elements in each field n and the result
follows directly from the description above.

Property 4. The time complexity of the suggested dynamic-
programming algorithm is

O
(
n · (n3 + 1) · 3W

)
= O

(
n4 · log(n)

)
. (6)

VI. CONCLUSION

In this paper we studied efficient encoding schemes for fixed-
width memories. We presented a new optimization problem and
studied properties of the optimal obtained success probability.
While we suggested an algorithm that finds an optimal code for
a second field given the code of a first field, finding an optimal
pair of codes for the two fields is left as an open question.
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