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Abstract—It is often claimed that future systems will necessar-
ily be all-optical, because electronic devices are not fast enough
to keep up with the increase in fiber capacity. However, two
objections are commonly raised: first, optical systems need many
basic optical components, which are typically very expensive; and
second, optical systems need many switch reconfigurations, which
are typically very slow.

In this paper, we examine whether these two costs can
be fundamentally bounded. First, we develop the equivalence
between coding theory and optical system design by introducing
the concept of super switches. Then, we show how the minimal
expected number of switch reconfigurations is almost equal to
the state space entropy of the optical system. Finally, we point
out the trade-off between the two types of costs.

I. INTRODUCTION

Network systems such as routers, network processors or
buffers are commonly implemented today using electronics.
Consequently, their scaling abilities are limited by Moore’s
law and memory bandwidth growth, which have historically
grown slower than optical link capacities [1]. As incoming
fibers become faster, it becomes harder and harder for them
to cope with the incoming traffic.

Because of this growth discrepancy, it is often claimed
that future systems will necessarily be all-optical. However,
two objections are commonly raised. First, optical systems
need many basic optical components, which are typically very
expensive. And second, optical systems need many switch
reconfigurations, which are typically very slow, especially
when compared to electronic switch reconfiguration times and
packet arrival speeds. In this paper, our goals will first be to
model these two types of costs, then present fundamental lower
bounds on these costs in general optical systems, and finally
build optical constructions that reach these lower bounds.

The research in this area started when Shannon published
his paper on the memory requirements of a telephone exchange
[2]. Then, the discussion on the complexity of connecting net-
works was further extended in [3]–[5], which introduced links
to information theory. Also related are works on time-slot-
interchange complexity [3], minimum-complexity combined
time-space switching [6]–[8] and minimum-complexity optical
queues [9], [10]. Below, we will consider and explain many
results of these papers under the angle of the two types of
costs.

In this paper, we first consider the question of minimizing
the expected number of switch reconfigurations. We find

equivalences between optical constructions and coding theory.
In fact, we find that the question of designing an optical system
with as few switch reconfigurations as possible is very similar
to the question of designing an optimal code.

For each state of the system, we define the switches that take
part in the formation of that state as active, and the switches
that are irrelevant to the formation of that state as passive. We
further define the theoretical complexity C∗ of the system as
the minimum expected number of active switches, where the
expectation is taken over the state space. This helps us provide
close lower and upper bounds on the theoretical complexity
of the system. In fact, if we denote the entropy of the state
space by H , we prove that

H ≤ C∗ ≤ H + 1.

We then discuss the question of minimizing the number of
2 × 2 switches in the system. We show that if the number of
possible states is K and the time it takes to perform one state
is T , the practical complexity C is lower bounded as follows:

C ≥ � log K

T
�.

A construction with a practical complexity that grows like this
lower bound is said to be practically optimal. We show that
there is a certain tradeoff between designing a system that is
practically optimal, and a system that is theoretically optimal.
This tradeoff appears usually when the states have a highly
non-uniform distribution.

It is important to note that this paper mostly presents a
fundamental approach to the complexity of optical systems,
without putting a stress on practical implementations. By
defining complexity and explaining how lower bounds on
complexity can be obtained, it is laying the ground for more
practical papers. In [11], we use these fundamental results to
present constructions of optical buffers and optically-buffered
routers that are practically optimal, i.e., have a number of basic
components that grows like the practical complexity lower
bound defined in this paper.

This paper is organized as follows. First, Section II presents
definitions related to systems and complexity of systems.
Then, Section III presents links between coding theory and
the complexity of systems. The theoretical complexity of a
construction is defined to be the theoretical minimum on
the expected number of switch reconfigurations, where the
expectation is calculated with respect to the states space. We



find lower and upper bounds on the practical complexity of
constructions, and define theoretically optimal constructions.
Finally, Section IV, the practical complexity is defined to be
the theoretical minimum on the number of 2×2 switches in a
construction, and the tradeoff between the practical complexity
and the theoretical complexity is presented.

II. DEFINITIONS

We will refer to a system as an ideal network element that
has input links, output links and inner states. The outputs of
the system are uniquely determined as a function of the inputs
and the inner states of the system during the entire time of
operation. Packet size is fixed, time is slotted and it takes one
time-slot to transmit a packet. If packets have variable sizes,
they are segmented into fixed size blocks during arrival and
reassembled at departure. Let’s first review the definition of
external states and internal states, as defined in [3].

Definition 1: A system has a set T of external states, where
each external state is a distinguishable possible system output.

Definition 2: A system has a set S of internal states, where
each internal state is a different setting of the system elements.

Consider the mapping σ : S → T , linking each internal state
to the resulting external state. By causality, to each external
state corresponds some internal state, i.e., σ is surjective.
Therefore, in order to reach T different outputs, at least an
equal number of internal states is required: |S| ≥ |T |.

The external states are not necessarily equiprobable. Using
their probability distribution, we are now able to define the
system entropy.

Definition 3: Assume that there exists a probability dis-
tribution PT on the set of external states T , with∑

ti∈T PT (ti) = 1. The system entropy is given by the entropy
of the external states:

H = −
∑

ti∈T

PT (ti) log(PT (ti))

Example 1: Consider the case of an N ×N switch, where
all the permutations are equiprobable. There are N ! equiprob-
able external states. Therefore, the entropy of an N×N switch
is given by:

H = −
∑

i=1,..,N !

1
N !

log(
1

N !
) = log(N !)

The basic element in our optical constructions is an optical
2 × 2 switch.

Definition 4: An optical 2× 2 switch is a network element
with 2 inputs, 2 outputs and a control input c, see Figure 1.
If c = 0, the switch is in a ”bar” state, and the inputs are
passed forward to the output links. If c = 1, the switch is in a
”cross” state, and the outputs are the inputs with interchanged
positions.

Definition 5: The state duration TS of a system is the time
it takes to form a single external state.

Example 2: The state duration of an unbuffered N × N
switch is TS = 1.

C

Fig. 1. A controlled 2 × 2 switch

III. THEORETICAL COMPLEXITY AND RELATIONS TO

CODING THEORY

A. Complexity of optical systems

There is an intuitive connection between the construction
of optical systems and coding theory [2], [3]. In fact, a 2× 2
switch could be thought of as equivalent to a binary digit.
In the same way as the binary digit can be set to zero or to
one, the 2× 2 switch can be set to a ”cross” or a ”bar” state.
For instance, Shannon has famously argued that the number
of 2×2 switches needed to construct an N ×N switch able to
realize all possible N ! permutations is at least C = log(N !)
[2], which is exactly the number of digits required to code N !
symbols with uniform distribution.

We will use the connection between optimal coding and
optimized optical construction to demonstrate an equivalence
between the minimal expected code length and the minimal
expected number of switch reconfigurations. While clearly
not directly useful for practical implementations, this result
is interesting in that it provides fundamental bounds on the
complexity of optical systems.

B. Definition of theoretical complexity

In this section we will define a metric for the number of
switch reconfigurations. We will denote it as the theoretical
complexity, and present connections to coding theory.

We would first like to examine whether there is any con-
nection between the entropy of the external states and the
complexity of a network element, as would seem natural. The
following example demonstrates that we should not measure
the complexity of a network element only using its number of
2 × 2 switches, but also using some other metrics.

Example 3: Consider a system with N inputs:
(I1, I2, ..., IN ) and N outputs: (O1, O2, ..., ON ), where
N is even and N ≥ 4. The system chooses between two
equiprobable states: either the outputs are equal to the
inputs, or the system interchanges the positions of every two
consecutive inputs:

(O1, O2, ..., ON ) ∈ {(I1, I2, I3, I4..., IN−1, IN )
(I2, I1, I4, I3, ..., IN , IN−1)}

In other words, the probability distribution over the set of all
possible N ! permutations is given by:

PT = {1
2
, 0, ..., 0,

1
2
, 0, ..., 0}

The entropy of a system with two equiprobable states is H =
1. However, it is not possible to construct such a system with
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Fig. 2. A super switch

less than N
2 2 × 2 switches, because there are N changeable

inputs. Therefore, this simple example shows that the number
of 2×2 switches of a system is not necessarily equal, or even
close, to its entropy.

Let’s introduce a new type of construction to bridge this
apparent gap between entropy and complexity. As illustrated
in Figure 2, a construction emulating the previous example
is a column of N

2 switches, which are all controlled by the
same control input. If the common control input is set to the
”bar” state, the inputs are passed forward to the output. If the
control input is set to the ”cross” state, the locations of each
pair of inputs are interchanged. We will define such a set of
switches, which are all controlled by a single control input, as
a super switch.

Definition 6: A super switch is an ensemble of 2 × 2
switches, which are all controlled by the same control input
(see Figure 2). The number of 2 × 2 switches composing a
super switch is called the size of the super switch.

The number of super switches in a construction equals the
number of independent controls. These independent controls
determine the internal states of the construction. Our goal will
be to state a connection between the number of independent
controls and the entropy of the network element.

In coding theory, the goal is to design a code such that the
average length of codewords is minimized [12]. An optimal
code is designed using the knowledge of the probabilities of
source symbols.

It appears that the key in the connection between coding
and switching lies in the number of independent controls in-
troduced above: each digit in the codeword corresponds to one
independent control. Similarly, each codeword corresponds to
a given set of independent controls. However, the connection
is not entirely straightforward: the number of digits in the
codewords is not fixed, while the hardware in a construction
is fixed. Therefore, we will define active and passive controls.
For a specific external state, active controls are those that
participate in forming that state, while the value of passive
controls is irrelevant in forming the state.

Definition 7: A control input is called active for a specific
external state if its value depends on the state. A control input
is called passive if its value is predetermined independently
of the state.

For instance, in the example above with the super switch

(Figure 2), there is a single control input that is always active.
If there were additional control inputs for switches that are
never used, then these control inputs would be called passive.

Now we will define the theoretical complexity of an optical
network element as the minimum expected number of active
controls over all possible constructions emulating it. Our
motivation will be to build optical constructions that reach
that minimum.

Definition 8: Assume that there exists a probability dis-
tribution PT on the set of external states T , and that lti

is the number of active controls necessary to form a state
ti ∈ T in a given construction. The theoretical complexity
C∗ of a network element is the minimal expected number of
active controls, where the minimum is taken over all possible
emulating constructions:

C∗ = min
∑

ti∈T

PT (ti)lti

For instance, consider the example above. There is a single
control that is always active, therefore the expected number
of active controls in the above construction is 1. This is an
upper bound on the minimum expected number, thus C∗ ≤ 1.
(In fact, we will see below that C∗ = 1.)

We will now find lower and upper bounds on the theoretical
complexity of a network element.

C. A lower bound on the theoretical complexity

The derivation of the lower bound on the theoretical com-
plexity will parallel the derivation of the the lower bound on
the expected length of codewords in coding theory [12].

A known result related to coding is Kraft’s inequality. It
states that if the length of the codewords for code L are
l1, l2, ..., lm, then it holds that

∑
i 2−li ≤ 1. Now, we can

state an equivalent theorem also for switches. We will use
this theorem in finding a lower bound on the theoretical
complexity. (For the sake of presentation, full proofs of all
the results in the paper are presented in [13].)

Lemma 1: (Kraft’s inequality) Assume that the number of
active controls for an external state ti ∈ T is given by lti

. It
holds that ∑

i

2−lti ≤ 1.

By minimizing the expected number of active controls under
Kraft’s inequality, we get a lower bound on the theoretical
complexity:

Theorem 1: Assume that the number of active controls for
an external state ti ∈ T is given by lti

and that its probability
is given by pti

. Then the theoretical complexity of the network
element is lower bounded by its entropy:

C∗ ≥ H.

The idea in coding is to assign short codewords to the most
frequent source words, and long codewords to the less frequent
source words. In fact, it is possible to design a code such
that the expected length of codewords is almost identical to
the entropy of the source. Here, the idea is similar: states



with high probability will be achieved with a small number
of active switches, and states with lower probability will be
achieved with a higher number of active switches.

D. An upper bound on the theoretical complexity

In this section, we present an upper bound on the theoretical
complexity of memoryless network elements. The upper bound
will be derived by showing that it is possible to construct a
general optical system, where the active controls at each state
are exactly the Huffman coding of that state. From coding
theory, it is known that the expected length of codewords
L of a code constructed by the Huffman procedure is upper
bounded by L ≤ H + 1. Therefore, the expected number of
active controls is similarly upper bounded. (A full and detailed
proof can be found in [13].)

Theorem 2: The theoretical complexity is upper bounded
as follows:

C∗ ≤ H + 1

Now that we have close lower and upper bounds, we get a
good measure of the optimality of a construction by using the
expected number of active controls.

E. Theoretically optimal constructions

In most cases, it is extremely hard, if not impossible, to
find a construction that fits the tight bounds on the theoretical
complexity. Therefore, we will loosen the strict theoretical
condition by only requiring that the expected number of active
controls would grow like the theoretical complexity. Con-
structions satisfying this condition will be called theoretically
optimal.

Definition 9: A construction is called theoretically optimal
if its expected number of active controls is equal in growth to
the theoretical complexity: L = Θ(C∗).

Let’s show an example of a theoretically optimal construc-
tion emulating a switch with non equiprobable permutations.

Example 4: Consider an N × N switch, where two per-
mutations have a very high probability and the rest of the
permutations have a very low probability, i.e., the probabilities
of the permutations are given by:

π = (
1 − ε

2
,
1 − ε

2
,

ε

N ! − 2
, ...,

ε

N ! − 2
),

where 0 < ε � 1. The entropy of this system is approximately
given by:

H ≈ 1 + ε log(N !)

Now, consider the construction in Figure 3. For simplicity
of drawing, each switch represents a super switch of length N .
This construction has three main stages. The first stage chooses
between performing the first dominant permutation or contin-
uing to the other options. The second stage chooses between
performing the second dominant permutation or continuing to
the other options. The third stage is a full Benes network [14],
[15] that performs the permutations with the lower probability.
Note that although the number of switches in this construction
is almost similar to the number of switches in a regular Benes

C1

Benes
NxN

C2

C3-NlogN

Fig. 3. A construction performing non-equiprobable permutations

network, the number of switch reconfigurations is much lower
in this construction. This is due to the fact that a Benes
network is optimized to the case where all permutations are
equiprobable, while here, the state probabilities are far from
being equal. Therefore, the proposed construction using the
a-priori knowledge of the state probabilities is more suitable.
We will now show that this construction is theoretically
optimal. In order to do so, we will calculate the expected
number of active controls with this construction:

L =
∑

i

πilti

=
1 − ε

2
∗ 1 +

1 − ε

2
∗ 2 + ε ∗ (N log N + 2)

≈ H +
1
2

Therefore this construction is theoretically optimal.
We have shown bounds on the theoretical complexity,

defined theoretical optimality and shown examples for memo-
ryless systems. In [13], we extend these results and prove that
they also hold for the case of systems with memory.

Until now, the measure of optimality we were interested in
was the expected number of active controls, which is related
to the number of switch reallocations. Now, we will consider
the question of minimizing the number of 2 × 2 switches in
the construction.

IV. PRACTICAL COMPLEXITY VERSUS THEORETICAL

COMPLEXITY

A. Definition of practical complexity

Until now, we considered only the number of different states
and their probabilities in calculating the theoretical complexity.
The structure of states themselves had no significance. In this
section, we will define the practical complexity of a network
element as the number of 2 × 2 switches required to emulate
a system, and illustrate the tradeoff between practical and
theoretical complexity.

Definition 10: The practical complexity C of a construction
is the number of 2 × 2 switches in the construction.

In order to find the connection between the number of
states and the practical complexity, we will consider the state
duration. We will assume that all the states have equal state
duration. In order to find the connection between the number
of states and the practical complexity we will use arguments



similar to those mentioned in [5]. Consider the operation of
C switches during T time-slots. If each switch is a single
switch, i.e., not a part of a super switch, and is always active,
the maximal number of internal states formed is 2CT . Since
the number of internal states is lower bounded by the number
of external states, we get the following theorem:

Theorem 3: Assume that the number of different states in
the construction is K. It holds that number of 2× 2 switches
C is lower bounded as follows:

C ≥ � log K

T
�,

where T is the state duration.
Note that if the states are equiprobable, the theoretical

complexity is C∗ = log K, and we get C ≥ C∗
T . Now we can

define a practically optimal construction to be a construction
with a number of 2×2 switches that grows like the introduced
lower bound.

Definition 11: Denote by C the practical complexity of a
system with K states, and with state duration T . We say that a
construction is practically optimal if C = Θ( log K

T ), i.e., there
is some constant a such that

� log K

T
� ≤ C ≤ a

log K

T

To illustrate this result, in [11], we present constructions of
optical buffers and optically-buffered routers that are practi-
cally optimal. We first use the definitions above to provide a
lower bound on the number of 2 × 2 switches required, and
then present practical constructions with a number of 2 × 2
switches that grows like the introduced lower bound.

Definition 12: A construction that is both practically opti-
mal and theoretically optimal will be called optimal.

Note that not every practically optimal construction is also a
theoretically optimal construction, and not every theoretically
optimal construction is also practically optimal. In fact, there
often exists a tradeoff between theoretical and practical opti-
mality. Let’s present an example demonstrating the tradeoff.

Example 5: Consider the case of an N × N switch with
two dominant permutations as presented in Example 4. On
the one hand, emulating this system with a Benes network is
practically optimal, but not necessarily theoretically optimal
(because if the two dominant permutations are those from
Example 3, it can easily be shown that a Benes network
needs at least N/2 super switches). On the other hand, the
construction presented in Figure 3, while theoretically optimal,
would require more 2 × 2 switches than the Benes network.

The previous example illustrates the tradeoff between the-
oretical and practical complexity. Assuming that the reallo-
cation of connections is an operation that requires time, we
do not want to ”waste” many reallocations on states that
are very frequent. So for this example, a Benes network is
highly wasteful and not theoretically optimal, even though
it is practically optimal. On the other hand, note that a
theoretically optimal construction for this case will require
slightly more switches – although it is both practically optimal
and theoretically optimal, and therefore optimal.

V. CONCLUSION

In this paper we were interested in two different cost
measures: number of switches and expected number of switch
reconfigurations. First, we presented links between switching
theory and coding theory. We found that the design of a
network element with a minimized expected number of switch
reconfigurations is equivalent to the construction of optimal
codes. Then, we presented a general construction of a switch
that achieves cost lower bounds given some state probability
distribution. Finally, we argued that such a construction is not
always practical, and discussed the question of minimizing the
number of 2 × 2 switches in the system.

As noted above, this paper lays a fundamental ground,
by providing lower bounds on the complexity of practical
implementations. In [11], we use these fundamental results to
present constructions of optical buffers and optically-buffered
routers that are practically optimal, i.e., have a number of basic
components that grows like the practical complexity lower
bound defined in this paper.
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