A Load-Balanced Switch with an Arbitrary
Number of Linecards

Isaac Keslassy, Shang-Tse Chuang, Nick McKeown
{keslassy, stchuang, nicki@stanford.edu
Computer Systems Laboratory
Stanford University
Stanford, CA 94305-9030

Linecard Linecard Linecard

Abstract— The load-balanced switch architecture is a promis
ing way to scale router capacity. It requires no centralized schec
uler, requires no memory operating faster than the line-rate, anc
can be built using a fixed, optical mesh. In a recent paper we e
plained how to prevent packet mis-sequencing and provide 100
throughput for all traffic patterns, and described the design of &
100Th/s router using technology available within three years. Bl
there is one major problem with the load-balanced switch tha @
makes the basic mesh architecture impractical: Because the o
tical mesh must be uniform, the switch does not work when on
or more linecards is missing or has failed. Instead we can use
passive optical switch architecture with MEMS switches that are
reconfigured only when linecards are added and deleted, allowir
the router to function when any subset of linecards is present an
working. In this paper we derive an expression for the numbe
of MEMS switches that are needed, and describe an algorithm 1
configure them. We prove that the algorithm will always find a
correct configuration in polynomial time, and show examples c
its running time.

1 1

[

2

N

2
3 3

W

-
}_.

\
4
|

)

LR | || EHE ||

IN

111

I

AWGR

Fig. 1. Load-balanced router architecture
I. BACKGROUND

Our goal is to identify router architectures with predictable A load-balanced router based on an optical mesh is shown in
throughput and scalable capacity. At the same time, we wowghure 1. Figure 1(a) shows the basic mesh architecture with
like to identify architectures in which optical technology (fory = 4 linecards interconnected BN ? links. Each linecard in
example optical switches and wavelength division multiplexhe first stage is connected to each linecard in the center stage
ing) can be used inside the router to increase capacity by redpgg-a channel at rat&/N, whereR is the linerate andV is the
ing power consumption. number of linecards. Likewise, each linecard in the center stage

In a previous paper [1] we explained how to build a 100Tb{g connected to each linecard in the final stage by a channel at
Internet router with a single-rack switch fabric built from esrate /. Essentially, the architecture consists of a single stage
sentially zero-power passive optics, but without sacrificingf buffers sandwiched by two identical stages of switching. The
throughput guarantees. Compared to routers available todgyifer at each center stage linecard input is partitioned Mto
this is approximately 40 times more switching capacity thageparate FIFO queues, one per output (hence we call them vir-
can be put in a single rack, with throughput guarantees that @@ output queues, VOQs).
commercial router can match today. The key to the scalabil-The operation of the two meshes is quite different from a
ity is the use of thdoad-balanced switchfirst described by normal single-stage packet switch. Instead of picking a switch
C-S. Changet al. in [2]. In [1] we extended the basic archi-configuration based on the occupancy of the queues, packets ar-
tecture so that it has provably)0% throughput for any traffic yiying at each input are spread uniformly over the center stage
pattern, and doesn’'t mis-sequence packets. It is scalable, fi@Scards. A packet arriving at timeto input linecard is sent
no central scheduler, is amenable to optics, and can SimpliB/Iinecard[(i +t) modN] + 1; i.e. the mesh performs a cyclic
the switch fabric by replacing a frequently scheduled and renitt, and each input is connected to each output exaktth
configured switch with a single, fixed, passive mesh of WDM the time, regardless of the arriving traffic. The second stage
channels. mesh is identical; it services each VOQ at fixed r&{&V, re-

This work was funded in part by the DARPA/MARCO Center for Cir-gardless of its occupancy. Although they are identical, it helps
cuits,_Systems and Software, by the DARPA/MARCO Inter_connect Focus Cegy think of the two stages as performing different functions.
ter, Cisco Systems, Texas Instruments, Stanford Networking Research Ce ' first stage is a load-balancer that spreads traffic over all

Stanford Photonics Research Center, and a Wakerly Stanford Graduate Fell .
ship. the VOQs. The second stage serves each VOQ at a fixed rate.

Static
Electronic Fixed MEMS Optical Electronic
Switches Lasers Receivers Switches

1 — &G [T 1:

MEMS

Linecard 1 Linecard 1

MxL Linecard 2
Crossbar

Linecard 2 LxM
Crosshar

Linecard L Linecard L

GxG
MEMS

Group 1 Group 1

Linecard 1 Linecard 1

MxL Linecard 2
Crossbar

Linecard 2 LxM

Crossbar GxG

MEMS

Linecard L Linecard L

Group 2 Group 2

So B o
et R [

: ;
: i | Crossbar MEMS Crosshar | 3 E
Group G Group G

Fig. 2. Hybrid optical and electrical switch fabric.

The packet is put into the VOQ at the center stage linecard ac-The switch fabric must therefore be able to scatter traffic
cording to its eventual output. Sometime later, the VOQ will beniformly over the linecards that are present. This means the
served by the second stage. The packet will then be transfersedtch needs to be reconfigured as linecards are added and re-
across the second switch to its output, from where it will departoved, and we’ll no longer be able to use a uniform fully-
the system. interconnected mesh. In [1] we described a hybrid electro-
Although Figure 1(a) appears to sh@a linecards (V for optical architecture that solves this problem, and will operate
each stage), a real implementation would havinecards, and with any subset of linecards; itis shown in Figure 2. We encour-
each linecard would contain three logical parts. This meaage, and assume, that the reader is familiar with [1]. Previously,
that the two meshes can be replaced by a single mesh rwe haven't explained how to configure the switch, or even
ning twice as fast, as shown in Figure 1(b). Every packet traroved that it can spread traffic uniformly over all linecards.
verses the switch fabric twice: Once from the input linecard 1o this paper we describe an algorithm to do this, and prove that
a VOQ in the center stage linecard, then a second time from ih&ill always find a valid configuration, so long as we have a
VOQ to the output linecard. Finally, we can replace the mesiufficient number of MEMS switches.
of N2 fibers by2N fibers and an arrayed-waveguide router
(AWGR [3]), as shown in Figure 1(c). In this case, each irB. Overview of problem

put linecard uses WDM to multiplex a separate channel at rateThe architecture is arranged @sgroups ofL linecards. In
2R/N for each linecard onto a single fiber. The AWGR is ghe center)! statically configured? x G MEMS switches in-
passive fixed device that permutes the channels so that eg¢Bonnect the> groups. The MEMS switches are reconfig-
linecard receives a channel at rate/N from each linecard. yred only when a linecard is added or removed. Each group
of linecards spreads packets over the MEMS switches using an
Il. PROBLEM STATEMENT L x M electronic crossbar. Each output of the electronic cross-
bar is connected to a different MEMS switch over a dedicated
fiber at a fixed wavelength (the lasers are not tunable). Packets
Unfortunately, the load-balanced switch based on a passfvem the MEMS switches are spread acrossiHimecards in a
mesh requires all linecards to be present and working. The loggleup by anl/ x L electronic crossbar.
balanced switch works by spreading packets over all linecardsWhen all linecards are present the operation is quite straight-
and therefore needs to be aware of which linecards are predenvard. For each linecard within a group, the electronic cross-
and which are not. If some linecards are missing, traffic musar sendd. consecutive packets to one laser. It then sefds
be spread equally over the remaining linecards. consecutive packets to the next laser, and so on, cycling through
This is a very real problem. Routers are often bought withal G lasers in turn. The first MEMS switch is statically config-
subset of linecards present to start with, and more are addedigesd to connect group to groupg; the second MEMS switch
the network grows. Linecards fail and need to replaced, or arennects group to groupg + 1, and so on. This means that if
removed as the topology changes. In general, the router magiacket is sent from groupby laserk, it will be delivered to
operate when linecards are connected to arbitrary ports. group[(g + k£ — 2) modG] + 1. The electronic crossbar at the

A. Background

tion in circuit switching, we will call this sequencdrame

Let us consider an example of how we might construct a
frame. Consider the example in Figure 3 again. Since each

" @ linecard needs to spread its data uniformly over three out-

put linecards, the frame will have three slots. In the frame,

each linecard will send one packet to each of the three out-

Linecard 3 L g

pEp—— 8RI3 pT— put linecards. A conflict occurs if, when a linecard sends a
[oreowz Crossbar Crossbar I packet, the packet arrives at the output at the same time as an-
other packet; or, if the packet collides with another packet in a
EP— 4R3 w3 pEP— MEMS switch. The algorithm that determines the frame needs
Crossbar 2R3 Crossbar to be aware of these conflicts.
In the remainder of this paper, we first formally describe
® the problem in Section Ill. In Section IV, we determine the
Satie minimum number of MEMS switches needed. Finally in Sec-
- tions V-VII, we describe an algorithm that will correctly con-
tinad1 |, |ars s [Linecard struct the frame.
lml_ Crossbar | 4R/3 Crosshar __'m‘
. I1l. L INECARD SCHEDULE PROBLEM
[irecass | 22 22 s | We will assume throughout that there a¥egroups; group
X containsL; linecards, and the total number of linecards is:

©

G
N=) L.
Fig. 3. Example of a hybrid switch architecture with three linecards in two Z '
groups. (a) A full linecard mesh logical view. (b) Groupis not fully pop- i=1
ulated, and so the rates between groups are different. (c) The configuratio

MEMS switches to achieve the required rates. r\'/\9(3 will assume thatL,, Lo, ..., Ls are fixed for a given

linecard arrangement.

During every frame ofN time-slots each sending linecard
output received. consecutive packets from each of the inpuieeds to be connected exactly once to each of\threceiving
groups. It spreads these packets so that one packet from gafdtards. Similarly, each receiving linecard needs to be con-
group goes to each of thelinecards. Hence, there is an equahected exactly once to each of thé sending linecards. Fur-
rate path between every pair of linecatds. thermore, in every time-slot, each sending linecard cannot con-

Things get more complicated when there are fewer linecarflgct to more than one receiving linecard, and vice-versa.

present. We will illustrate the problem with a Simple switch Put mathematica”y’ if Sending linecaids connected to re-
with just three linecards. Figure 3(a) shows three linecards cqfiving linecardr’;; in time-sloty, then:
nected as a full mesh; each linecard sends al@&}a3 to every

other linecard. Now partition the linecards into two groups, Ty # Tij forall j" # j
A and B, with two linecards in groupd and one linecard in Tij # Tij forall i’ # i
group B, as shown in Figure 3(b). We will determine how the T;; €{1,...,N} foralli,j

electronic crossbars and MEMS switches are configured so th
each pair of linecards is connected at ia&'3. GroupA needs
to send at an aggregate rate&®/3 to group 4, and4R/3

to group B; group B needs to send at ratg?/3 to group A For instance, let's assume thag = 3, L, — 2, andL; = 2

and2R/3 to groupB. If we assume that each crossbar outpL&e' G = 3, N = 7). Thenthe following is a linecard schedule:
can send at maximum ra®&R, we require two outputs and two ' ’

a\t/Ve’II call T thelinecard scheduleT is a Latin square, i.e.
the numbers from to N appears exactly once in every row and
every column. We will refer to a time-slot as a column.

MEMS switches to connect groug to group A. We there- 1 2 3 4 5 6 7
fore need a total of three MEMS switches, two arranged in the syt s T
straight configuration and one arranged in the cross configu- T—|7 35 6 7 1T 2 3
ration. The correct configurations of the MEMS switches are 5 6 7 1 2 3 4
shown in Figure 3(c). f; 1 ; 3 i ‘51 2

To spread packets uniformly over the linecards, we need to
pick the static configuration for each MEMS switch, and the The last constraint arises from the use of MEMS switches in
sequence of permutations followed by the electronic crossbate hybrid optical-electrical switch fabric. L&t represent the
We will do this by finding a fixed-length sequence of permutaaumber of linecards in group The rate needed between group
tions for eachL x M crossbar, then instruct each crossbar toand groupj is equal to

cycle repeatedly through this sequence. Following the conven-
yele repeatedly Throtg g 9 (Li-2R) - (L;/N), wherel < i,j < G.

L Strictly speaking, this only works whelh < G since the numbers of MEMS o]) o)
switches needed between groups is equaﬂﬂa/(Lg)] = [L/G]. If, say, Thisis because the incoming traffic is spread uniformly over all
G = 2andL = 3, we need more MEMS switches; but the operation is similatV receiving linecards, and groypreceives a portiofL; /N)

of this traffic. As assumed above, two groups can only com-We will introduce different types of schedules to help clar-
municate at a rate up tR through any single MEMS switch. ify the presentation of the linecard schedule solution. The
Therefore, the minimum number of MEMS switches betwedhree new schedules are (1) linecard-to-linecard, (2) linecard-

groups and groupyj is: to-group, and (3) group-to-group schedules. As described in
the definitions below, the first part of the schedule name rep-

[Li 2R-L; 1-‘ _ {Li 'Lj-‘ resents whether the schedule determines the specific sending

N 2R N | linecards or only the sending groups, and the second part of the

name specifies whether the schedule determines the specific re-
ceiving linecards or only the receiving groups. For instance, a
ﬁﬁecard-to-group schedule will determine which linecard will
Ré&nd to which receiving group in each column.

Definition 1: A linecard-to-linecard(L-L) scheduleT is a
matrix with N rows corresponding to th& sending linecards,
N columns corresponding to thé time-slots of the frame, and

IV. NUMBER OF MEMS SwITCHES NEEDED FOR A one receiving linecard index per row-column intersection.
LINECARD SCHEDULE Note that a linecard-to-linecard schedule is the same as a

The following theorem shows how many MEMS switchelinecard schedule.

are needed in order to build a linecard schedule that satisfie®e€finition 2: An L-L scheduleT is said to bevalid iff a re-

We will call this theMEMS constraint

Matrix T" above doesn't meet the MEMS constraint becau
the maximum number of connections allowed between grou
and group 1 at any time-slot {22 | = 2. Similarly the second
and third groups also don't meet the constraint.

the MEMS constraint. ceiving linecard appears exactly once in every row and column
Theorem 1:We need at least of T, and at mos Lijvﬂ receiving linecards from groupare
Ie. connected to sending linecards from graup any column of
o= Z {LLJ-‘ <L+G-1 T (MEMS constraint).
=1 N In other wordsy" is a valid L-L schedule if itis a Latin square

satisfying the MEMS constraints. Here is an example of a L-L
static MEMS switches in order to build a linecard schedule thgéhedule which is valid.

satisfies the MEMS constraint, whefe= max;(L;).

Proof: A MEMS switch can connect a sending group ; g ? g ? g Z

to at most one receiving group, and the minimum number of 4 3 7 1 5 6 2
MEMS switches needed to connect sending growp all re- T= ? 51) i ;l g ; (15
ceiving groups is: 5 6 7 1 1 &
6 7 5 2 4 1 3

R
j=1 N Notice that the MEMS constraint used in Definition 2 applies
to groups, not linecards. For instance, the example matis

In particular, assume that the largest group has max;(L;) A
linecards. Then the total number of MEMS switches needed B§t &llowed to have more than two receiving linecards from the
lfjrst group in the first three rows in any column. Therefore, in

the largest group to connect to all receiving groups is at least: :)
order to build L-L schedules, we cannot only consider the con-

S rr.L. G /L. L. straints on linecards, but also need to take into account the con-
a= Z {NJ-‘ < Z (N L+ 1) =L+G. straints on groups. The MEMS constraint makes the linecard
schedule problem non-trivial.

We will show that it is possible to build a valigroup-to-
group schedule that only considers constraints on groups, and
then successively build a vallshecard-to-groupschedule and
finally a validlinecard-to-linecardschedule which incorporates
the constraints on linecards. We will define and provide exam-

3.3 3.9 3.9 ples for these schedules below.
“= {J * {71 * {71 =4

Jj=1 Jj=1

Becausey, L andG are integersq < L + G — 1.
Hence we need at most+ G — 1 static MEMS switches to
create a uniform mesh with any linecard arrangement. W
In our example withl.,; = 3, L, = 2, andL3 = 2,

B. Linecard-to-Group Schedule
Itis clear thate < L + G — 1 = 5. Using a different linecard

configuration wherd, = 3 andG = 3, it is also possible to
reach the upper bound, for instance with = 3, L, = 3, and

Definition 3: A linecard-to-group(L-G) scheduld’ is a ma-
trix with N rows corresponding to th& sending linecardsy
columns corresponding to th¥ time-slots of the frame, and

Ly =2. one letter per row-column intersection corresponding to the re-
ceiving group.
V. VALID SCHEDULES Definition 4: An L-G schedulé’ is said to bevalid iff the it"
A. Linecard Schedule letter appears exactll; times in each row and each column,

LiL;]
In this section, we will find an algorithm that works withand at most[—N ’-‘ times in the linecards of groupin any
exactlya MEMS switches. column ofU (MEMS constraint).

Here is an example of a valid L-G schedule. all the elements that need to be scheduled. Its rows represent
the sending groups, its columns the receiving groups (letters
‘A”,“B”, ...). Atthe start, for all ¢, j, M;; = L; - Lj, i.e. there
are L; - L; connections to schedule from sending grauio
receiving group during the whole frame.

Iteratively:

Fort = N,N —1,...,1, proceed as follows.

1) For eachi, j, do the decomposition al/; in baset:

S

Il
QxQ e
Qx> Qw
QW Qe
= Qe e QA
T Qeas
e QAW
= Qe QA

Notice that matrixV is the same as matrik except that the) . i . L) A
receiving linecard indices are replaced with the letters corre- M;; - _Pz‘j't_*’Qij (|.e._P = L?M J’Q = M"—P*-1).
sponding to the receiving linecard group. In this iteration, we will start by scheduling?, and then

consider the remaind&p’ and schedule a part of it such

that all the constraints are satisfied.

C. Group-to-Group Schedule 2) Define the vectora’ andb’ such that

Definition 5: A group-to-group(G-G) schedulé/ is a ma-

trix with G rows corresponding to thé’ sending linecard S Qt,]
. - al = &=L forall:
groups, N columns corresponding to th¥ time-slots of the i et
frame, andL; letters per row-column intersection in raw bt = % for all j
Definition 6: A G-G scheduld’ is said to bevalid iff the i !
letter appears exactly; - L; times in each row (correspond- at andbt are integer vectors (cf proof).

ing to sending group), L; times in each column, and at most 3) Find a 0-1 matrix?! < Q' such that:
[L”Lﬂ times in any row-column intersection in raWfMEMS

N G .

constraint). Zgzl R, =a; foralli

Here is an example of a valid G-G schedule. Yooy Rl =0 forallj
R;; € {0,1} for all 4, 5

BC AB AB AB AC AC AC
AC AC BC AC AB AB AB

The proof in the appendix shows thd’ exists (it

uses graph theory for proof of existence, and the Ford-
Notice that one can get matrix V by grouping together the Fulkerson max-flow algorithm for building it).

rows corresponding to the same group in matrix U. 4) Use the schedul&® = P!+ R for this time-slot. Update

M=t = Mt - St

AAB ABC AAC ABC ABC ABC ABC
V:

D. Schedule Equivalence Theorem

Given a valid L-L schedule, we can easily deduce a val@. Example
L-G schedule, and then a valid .G'G schedule. However, it. isWe build the matrixV’ given the schedulesy?, provided in
not obvious how to create a valid L-L sch.edu_le from a.val'ﬁlable . More specificallys;; represents the number of occur-
G-G schedule. The following theorem, which is proved in thFences of thei'" letter in thei®” row in column — ¢ + 1 of
appendix, shows that we can.) .

Theorem 2:Consider the following three schedules: matrixV". For instance, the schedule

(i) A valid linecard-to-linecard (L-L) schedul®

(i) A valid linecard-to-group (L-G) schedule ST —

(iii) A valid group-to-group (G-G) schedul&

Given one schedule we can create the other two: &(L)-

G)=(G-G). _ . _helps us create the first column Bfhaving two A’s and one

In the next section, we will show how to construct a valid Gg in the first row, oneB and oneC in the second row, and
G schedule, hence proving that it is always possible to obtainae 4 and oneC in the last row.S¢ will determine the second
linecard schedule that satisfies the MEMS constraint. column, 5 will determine the third column, and so on. The

resulting matrix is

—= O N

1
1
0

=)

VI. CONSTRUCTING AVALID G-G SCHEDULE
A. Algorithm for Constructing a Valid G-G Schedule V=

We will now construct an algorithm that recursively builds a
valid group schedule time-slot after time-slot, for tNetime-
slots of the frame. We will then show in the appendix that the VIl. VALID L-L SCHEDULE
algorithm finds a valid solution, and that it has a polynomial) .
complexity. A. From a Valid G-G Schedule to a Valid L-G Schedule

At the start: We will now construct an algorithm that successively builds a

Let ¢ be the number of time-slots left to schedule after easkalid L-G schedule given a valid G-G schedule, and then a valid
iteration. At the startf = N, since all the time-slots are un-L-L schedule given a valid L-G schedule. This algorithm will
scheduled. Also, leds = M* = MY be the initial matrix of be used in the appendix to prove Theorem 2. In this section, we

BC AB AB AB AC AC AC
AC AC BC AC AB AB AB

< AAB ABC AAC ABC ABC ABC ABC >

TABLE |
EXAMPLE OF APPLICATION OF THE ALGORITHM

9 6 6 1 0 0 2 6 6 1 1 0 2 1 0
M7:<6 4 4),P7=<0 0 0),Q7:<6 4 4),R7=(0 1 1>,s7:(0 1 1).
6 4 4 0 0 0 6 4 4 1 0 1 1 0 1
7 5 6 1 0 1 1 5 0 0 1 0 11 1
MG:<6 3 3),P6:<1 0 0),@6:(0 3 3),R6=(0 1 0),56:(1 1 0).
6 4 3 0 0 0 6 4 3 1 0 1 1 0 1
6 4 5 1 0 1 1 4 0 1 0 0 2 0 1
M5_(5 2 3),135_(1 0 0),@5_(0 2 3),35_(0 1 0),55_<1 1 o).
4 4 2 0 0 0 4 4 2 0 1 1 0 1 1
4 4 4 11 1 0 0 0 0 0 0 11 1
M4(4 1 3),P4<1 0 0),@4(0 1 3),R4(0 1 0),54(1 1 0).
4 3 1 1 00 0 3 1 0 0 1 1 0 1
t ot ot 11 1 0 0 0 11 1
Finally,fort:3,2,1:Mf_(t 0 t):t(1 0 1),R'_<o 0 0 > andS":(1 0 1)
t t 0 1 1 0 0 0 0 11 0

will transform the valid G-G schedule described in Section Wermutations [4], [5} We obtainL; permutations. By read-

into a valid L-G schedule. ing column after column, each of these permutations gives a

For eachl < j < @, consider rowj in V. In our example, sequence of sub-letters that corresponds to a row of the de-
the first row is: sired L-G schedule. Therefore, tiig permutations yield the

L; rows of the L-G schedule corresponding to grgupn our
(AAB ABC AAC ABC ABC ABC ABC) example, the first permutation could be:

We want to subdivide each royinto L; sub-rows, corre- | coll col.2 col3 cold col5 col.b col.7
sponding to the subdivision of each sending grgupto L; A, 1 0 0 0 0 0 0
sending linecards, thus forming a valid L-G schedule. Ay 0 0 1 0 0 0 0

First, each letter had,; - L, occurrences in any given g? 0 0 0 0 0 0 oo
row of V. Arbitrarily divide them intoL; subscripted let- Bo 0 0 0 0 0 1 0
ters (“sub-letters”) ofL; elements. In our example, we trans- C1 0 0 0 1 0 0 0

Co 0 0 0 0 0 0 1

form the letters ofl/ into N arbitrarily assigned sub-letters
(A1, As, A3, B, By, Cy,C5). For instance, sincd appears)
times in the first row, we replace th€s arbitrarily with 3A4;’s,
3 Ay’s and 345’s: A, Bi Ay O As By G

(A1A1B1; A1B1C1; A2AxCh; A2B1Ci; A3B2Ca; A3B2(Ch; (Ay C As By Cs As Bs >
A3B2C3) B1 A Ci Ay By C2 Az

In row j of matrix V, each of thelV sub-letters had.; oc-
currences, and each of tié columns had.; elements. Let's We finally replace each sub-letter by the corresponding letter,
form a new matrix that has sub-letters as inputs and columnsamgl get the valid L-G schedule. Upon examination of the algo-
outputs. In this new matrix, all columns and all rows hdve rithm, it is clear that we only permute letters within the same
elements. In our example, the new matrix for the first rowof column of the same sending group, thus yielding a valid L-G
is : schedule. In our example, the resulting L-G schedule is:

yielding the first row of:

|| col.1 col.2 col.3 col4d col.5 col.6 col.7

a2 T 0 0 0 0 0 A B A C A B C
A |l 0 0 2 1 0 0 0 A i A B C A B
Az |l o 0 0 0 1 1 1 B ¢ A B C A
211 . 0 . 0 0 0 U=|B3ZAa a3 a2 ¢
B> 0 0 0 0 1 1 1 ¢ B B A C A A
o 0 1 1 1 0 0 0 A A C ¢ A B B
Co 0 0 0 0 1 1 1 ¢ ¢ B A B A A

) We can now aPp'y th_e Birkhoff-von N_eumann decompOSi'zBecause all elements are integers we could use graph-coloring in-
tion theorem to this matrix, by decomposing it into a sunLef stead [6][7][8][9].

B. From a Valid L-G Schedule to a Valid L-L Schedule 50
In the previous section, we constructed a valid L-G sche(3G 40 |
given a valid G-G schedule. In this section, we will transfo &
the valid L-G schedule into a valid L-L schedule. iﬁ/
We apply the Birkhoff-von Neumann theorem (or graf g 30
coloring) for each letter. First, we replace eakhvith a “1”, =
and every other letter with a “0”. For our example, we get: =3 20 -
A0 A 0 A 0 0 € 10
A 0 A 0 0 A O 3
0 A 0 A 0 0 A
0 A A 0 A4 0 0 0 ‘ ‘ ‘
0 0 0 A 0 A A
I A 0 0 A 0 0 0 10 20 30 40
0 0 0 A 0 A4 Number of Groups
1 0101 0 0 Fig. 4. Running time of our implementation of the algorithm. Times are
1 0100 1 0 averaged over 100 runs for each valugbf
01 0 1 0 0 1
— |70 1T 1T 0 1T 0 0
0 001 0 1 1 Given an arrangement of linecards and groups, the program
(1) (1) 8 0 (1) o0 finds a valid G-G schedule to configure the MEMS switches

and electronic crossbars.
We then decompose the above matrix into the suth;afif- We ran the program on a Pentium Ill operating at 1GHz,
ferent permutations, such that tHé permutation will indicate with different values ofG, N and L, up to maximum values
at which times linecard is scheduled. Since there are exactiv. = 640, L = 16 andG = 40. In each successive run, the
L, ones (corresponding to tHg A's) in each row and column, placement of linecards in the rack was picked uniformly at ran-
this is possible by Birkhoff-von Neumann. In our example, wdom. The running times, averaged over 100 runs per value of
can decompose the above matrix into the sum of three pernda-are shown in Figure 4.
tations: Our implementation runs too slowly to pick a new configu-
ration in real-time when a linecard is added, removed or fails.

é 8 (1) 8 8 8 8 ? 8 (1) 8 8 8 8 The typical requirement would be that the router be up and run-
0001 0 0 0 00 00 0 0 1 ning again with 50ms of a change, whereas with= 640 the
8 (1) 8 8 8 8 (1’ + 8 8 8 8 (1) (1’ 8 algorithm took up to 50 seconds to complete. Although our im-
00 0 0 1 0 0 01 0 0 0 0 0 plementation is not ideally optimized, it is unlikely to run fast
000 0 010 00 0 1 0 0 O enough to make real-time decisions.
In practice, we could run the algorithm in advance and store
0000 10 0 the results. When a certain group of linecards is present, we
00 00 0 1 0 can pre-calculate all the configurations that differ by one or two
01 00 0 0 0 linecards, or one or two groups (e.g. if a whole rack is pow-
B B S O ered down, or fails). Alternatively, but less likely, the algorithm
10 0 0 0 0 0 could be implemented to run very quickly in a custom ASIC.
000 0 o0 01 The algorithm lends itself to fine-level parallelism, especially in

e parallel Birkhoff-von Neumann decompositions, and would

. . fl
Applying this method to each letter, we then create a vall,an a lot faster than in software

L-L schedule, with exactly one occurrence of each receiving
linecard index in each row and column. In our example, we get
the following valid L-L schedule, hence concluding the con- IX. CONCLUSIONS

struction process: . . .)
P In this paper, we showed how it is possible to reconfigure the

1 4 2 6 3 5 7 load-balanced switch when one or more linecards is missing or

i g ; ? 57, 2 ‘21 has failed. We found that using the architecture described in [1],
T— |5 T3 173 7% we need at most + G — 1 static MEMS switches in order to

7 5 4 3 6 2 1 build a linecard schedule that satisfies the MEMS constraint,

2 3 g ; i ?‘“[g whereG is the number of groups andis the maximum num-

ber of linecards per group. We then described a polynomial-
time algorithm to configure the packet transmissions and the
VIII. PRACTICAL CONSIDERATIONS MEMS switches, and proved that it is not only necessary, but
To estimate how long the algorithm takes to run in practicalso sufficient to use: static MEMS. This was done based on
a program was implemented using the ‘C’ programming laedge coloring algorithms in a regular bipartite graph and the
guage (source code and detailed description available at [16{prd-Fulkerson max-flow algorithm.

X. ACKNOWLEDGEMENTS First, sinceR! = M*— P?, using the definition of** we get:

The authors would like to thank Professors Balaji Prahbakar
and Yinyu Ye for useful discussions; and Mingjie Lin for im-
plementing the algorithm used to generate results in Figure 4.

G .
(chle Q!;)modt =0 foralli
(Xi—1 Qf;) modt =0 forall j
0<Qf; <t—1 forall i, j

REFERENCES Thereforeat andb® are integer vectors.
o ¢
[1] Isaac Keslassy, Shang-Tse Chuang, Kyoungsik Yu, David Miller, Mark S€cond, from the definition of' andd*, they both have the
Horowitz, Olav Solgaard, Nick McKeown, “Scaling Internet routers usingame sum - call itr.

optics,”ACM SIGCOMM 2003Karlsruhe, Germany, Sep. 2003. ;) ; iefygi
[2] C.S.Chang, D.S.LeeandY.S. Jou, “Load balanced Birkhoff-von Neumann Third, let's prove that there exists a matiiX SatISfymg the

switches, part I: one-stage bufferingZEE HPSR '01 Dallas, May 2001. conditions above. In order to prove this, we use exercise 3.13
[3] P. Bernasconi, C. Doerr, C. Dragone, M. Capuzzo, E. Laskowski and i the paper by A. Schrijver [11]. It tells us thd! exists

Paunescu, “Large N x N waveguide grating routedsfirnal of Lightwave
TechnologyVol. 18, No. 7, pp. 985-991. July 2000. iff for each subsets; of the rows and for each subsef of
[4] C.S. Chang, J.W. Chen, and H.Y. Huang, “On service guarantees the columnsg + |E(s1, s2)| > Ziesl a; + Ejesz bj, where
input-buffered crossbar switches: a capacity decomposition approach|y(s. ¢.)| denotes the number of non-zero elem s with
Birkhoff and Von Neumann,IEEE IWQoS, Londgrl999. | (L 2)‘ K h e@l;
[5] G.D. Birkhoff, “Tres observaciones sobre el algebra lindhiversidad ¢ € $1,J € S2. But we know that
Nacional de Tucuman Revist8erie A, vol. 5, pp. 147-151, 1946.

[6] R. Cole, K. Ost and S. Schirra, “Edge-coloring bipartite multigraphs in |- to_ t
O(E log D) time,”Combinatoricavol. 21, pp. 5-12, 2001.) Z @i Z Qi _ Z o Qi
[7] R. Cole, K. Ost and S. Schirra, “Edge-coloring bipartite multigraphs in 1E51,7€52 1E81 1€51,J€s52
O(E log D) time,” New York University Technical Report NYU-TR1999-
792, New York, Sep. 1999. to> ¢t a — t
[8] A. Schrijver, “Bipartite edge-coloring in @m) time,” SIAM J. Comput.) Z Q” - Z ¢ Z Q”
vol. 28, pp. 841-846, 1999. i€51,J€52 €51 j€s2©
[9] N. Alon, “A simple algorithm for edge-coloring bipartite multigraphky*
formation Processing Lettersol. 85, issue 6, pp. 301-302, March 2003. Z Qﬁj >t Z a; —1 Z b;
[10] Switch configuration algorithm, available at i€s1,jCs2 i€s, j€s2C

http://lyuba.stanford.edu/or/SwitchConfig.c
[11] A. Schrijver, “A course in combinatorial optimization,” available at|n addition, since — 1 > Q‘?,,
http://www.cwi.nl/lex/files/dict.ps, Feb. 2003. - Y
[12] L.R. Ford and D.R. Fulkersorlows in NetworksPrinceton University

Press, 1962. Z togt >0 > Z ij,
2

1€51,] €S2 i€51,j €82

APPENDIX | therefore
PROOF FORTHEOREM 2

t(s t >t a; —t b i

First, as shown in Section V, it is easy to successively build a ieslzj:e@ 920 = lezs:l ' .525:0 !
valid L-G schedule from a valid L-L schedule and a valid G-G ’ =
schedule from a valid L-G s_chedule. _ Since|E(s1, s2)| = X ies, jess 0Qt >0,

On the other hand, Section VII shows the algorithm which
successively constructs a valid L-G schedule from a valid G- (5, 5. > a; — b = a; + b, — 0.
G schedule and a valid L-L schedule from a valid L-G sched- 1B, 52)] 2 Z Z ! Z Z !
ule. This is true as long as we can decompose the matrix into a
sum of permutations (for example, using a Birkhoff-von NeuFhus R? exists. Note that it is possible to construct it in poly-
mann decomposition or graph-coloring), which we can alway®mial time using Ford-Fulkerson (see next section).
do when the sums on each row and each column are equal [4]Fourth, let's show that the resulting schedStewill satisfy

ST j€s2C ST jEsa

[5]. the MEMS constraint, i.e. for all 7,
L. L
t v J
APPENDIX I Sij < [N W
PROOFS FOR THECONSTRUCTION OF THEVALID G-G
SCHEDULE We know that

: i 1
Proof: Assume that for a givey Sfj _ P;j n Rﬁj _ LMitJ‘J N Rfj,
G .
Zgzl M, = Lt for all i
Yo My =Lt forall j Rl < Q. =M. —t FM?.J
Li-Lj o 1] — 1] 1] t 1))
0< M < [TW t foralli,j
R <1,
This is obviously true for = N by definition of M*. We 5pq
will prove at the end of the proof that if we assume it foit’s Ut < L;-L; .
also true fort — 1. ig = :

Distinguish two cases regarding this last ine
equality is an equality,

L.-L.
t __ z J
= [B:],

SOR!, < QL = 0andS!, = M}, /t = [Li]'fj
this inequality is strict,

Mt Li-L t) i)
iJ N) Fig. 5. [llustration of Ford-Fulkerson Construction.

so there exists some> 0 such that Lol
Let’s now prove (iii). We know thad/}; < [W t, there-

L L, Li- L, L
/t N | €= (| 1) fore P.t. < [Tﬂ . Also we can decompostj in baset as
M{; = Pjjt + Qj;, and
Thus
ML = ppt — St
.. . () 1] 1)
{1ij = [LlNL]“ —14+[1—-¢] < [L = (Pz%t‘FQz;j)_(Pitj‘Fth‘j)
t - = Pitj(t_1>+(f’j_jo)'
and Distinguish two cases. In the case where
1 1 L; L;
t t t 13 1 J .. .
s 1< [5[5, e q,
L N
Note that in both cases then
t t t
gt < {LWLJ'-‘_ M5 = Pjt, Qi =0, Rj; =
Y= thus

;) ; ; . t—1 L.L:
Fifth, let's complete the recursion hypothesis and show that: ij_l _ Pitj(t 1) = M < [i ﬂ (t—1).

(i) Z o lMt V= Lit-1) for all ¢ o
(ii) E G ij Lot —1) for all j Otherwise, in the case where
(i) 0 < M5 < [T] (t—1) foralli,; Pl < {LZNLJ" L
We'll use the assumptions oWl stated at the start of the proof,
and the definition\/t~! = Mt — St we have
Let's first prove (i) by showing that M;l _ Pij(t; 1)+ (ﬁj _ jo)
< (5] -ne-D+Q;
Zszj’_ < [BEle-D-(-D+@-1)

= |5 e-,
(the proof for (ii) is similar). By definition,
G becaus&)}; <t — 1 as shown before. Hence (iii) is correct in
Z St - Z Pl +R.) both cases and the three properties are proven by recurrence.
frae! ‘ Finally, note that all parts of the algorithm are done in poly-
nomial time, and thus the algorithm is also in polynomial time.

and |

G G
t t
ZRW T (ZQ”/)/L APPENDIX I
I=t I=t FORD-FULKERSON ALGORITHM
As explained in the section before, it is possible to use Ford-
G G Fulkerson's max-flow algorithm [12] in order to construgt,
Z gt L = Z tpt/ + Q)/t = Z ij//t = L. and therefore the schedulés. More specifically, as illustrated
=1 =1 in Figure 5, construct the network as follows. There is one

thus

source,G inputs,G outputs, and one sink. The source is con-
nected to each inputwith capacitya;. Each inputi is con-
nected to each outpytwith capacitydq,,>1, i.e. capacityl if

Q;; > 1 and0 otherwise. Finally, each outpytis connected
to the sink with capacity;. Since capacities are integer, the re-
sulting flows will also be integers, and will thus yield a correct
matrix R,

