
Abstract -- High performance packet switches frequently use a
centralized scheduler (also known as an arbiter) to determine the
configuration of a non-blocking crossbar. The scheduler often lim-
its the scalability of the system because of the frequency and com-
plexity of its decisions. A recent paper by C.-S. Chang et al.
introduces an interesting two-stage switch, in which each stage
uses a trivial deterministic sequence of configurations. The switch
is simple to implement at high speed and has been proved to pro-
vide 100% throughput for a broad class of traffic. Furthermore,
there is a bound between the average delay of the two-stage switch
and that of an ideal output-queued switch. However, in its sim-
plest form, the switch mis-sequences packets by an arbitrary
amount. In this paper, building on the two-stage switch, we
present an algorithm called Full Frames First (FFF), that pre-
vents mis-sequencing while maintaining the performance benefits
(in terms of throughput and delay) of the basic two-stage switch.
FFF comes at some additional cost, which we evaluate in this
paper. 

I.  INTRODUCTION

Most high performance packet switches today use input

queueing, and a non-blocking (usually crossbar) switch fabric

[1][2]. To overcome head-of-line blocking and enable high

throughput, the input buffers are arranged as virtual output

queues (VOQs) [3]. To simplify the tasks of memory manage-

ment and scheduling, a fixed sized time slot is used, and hence

arriving variable length packets are segmented into fixed size

packets, or “cells”. Each time slot a centralized scheduler

examines the contents of the VOQs to determine the configura-

tion of the switch fabric for the next time slot. Numerous

papers have studied this approach, and have proposed new

scheduling algorithms that are simple to implement [4][5], pro-

vide throughput guarantees [6][7][8] or provide delay guaran-

tees [9][10]. 

In 1993, Anderson et al. [4] observed that the job of the

scheduler is equivalent to finding a matching in a bipartite

graph. McKeown et al. [6] showed that 100% throughput could

be guaranteed if a maximum weight matching is found, which

has a complexity of , where N is the number of

switch ports [11]. This has proved too complex for use in exist-

ing high performance packet switches. With the number of

ports increasing (hence increasing the complexity) and line

rates increasing (hence reducing the time in which the algo-

rithm must complete), maximum weight matching algorithms

will continue to be impractical. 

Some maximal size matching algorithms and heuristics have

been proposed that have a complexity of  or lower

[4][5][12]. While these algorithms have been widely used, the

need for switches with more ports and faster line rates makes

these algorithms harder and harder to implement. In fact, it

appears that the scalability of most input-queued switches

today is limited by the scheduling algorithm.

At least four different approaches have been proposed in the

literature to improve scalability. The first approach is to use a

simple randomized scheduling algorithm that exploits the cor-

relation between successive matchings [13][14]. Tassiulas et

al. [13] showed that a simple  randomized scheduling

algorithm could guarantee 100% throughput for Bernoulli i.i.d.

arrivals, although packet delay is large. Shah et al. [14]

recently introduced an alternative  algorithm that leads to

lower delays. The second approach is to increase the length of

a cell, which in turn increases the time slot and gives the sched-

uler more time to complete [15]. The third approach attempts

to pipeline the scheduler, allowing it to use out-of-date infor-

mation [7]. Although this approach does not reduce the

throughput, it increases packet delay.

The fourth approach, that motivated this paper, adopts a

novel structure proposed by C.-S. Chang et al. [16]. Their

switch consists of two stages, but has no scheduler. Both stages

of the switch follow a deterministic sequence of  different

configurations. All that is required is that each input is con-

nected to each output exactly once in the sequence. For exam-

ple, the sequence that we will assume throughout this paper is

one in which input  is connected to output (  modulo

) at time  in the first stage, and input  is connected to out-

put (  modulo ) at time  in the second stage. A cell

arriving to the first stage is immediately transferred without

buffering to an input of the second stage switch. The cell is

placed in a VOQ according to its output. The VOQs in the sec-

ond stage are all serviced at the same rate by a second deter-

ministic sequence. 

The intuition behind the two-stage approach is as follows. It

is known that a single-stage crossbar switch with VOQs that

are served by such a deterministic sequence will provide 100%

throughput for uniform1 Bernoulli i.i.d. traffic; but no guaran-

tees are possible when the traffic is non-uniform. In the two-

stage switch, the first stage effectively makes non-uniform traf-

fic uniform by spreading it evenly over the second stage.

Hence the two stages might be expected to provide 100%

throughput. In [16] this is proved rigorously, for a particular

definition of throughput and for a broad class of arrival pro-

cesses. 

A disadvantage of the two-stage switch is that cells can be

mis-sequenced by an arbitrary amount. Although strictly not
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disallowed in an Internet router [17], mis-sequencing can cause

problems for current versions of TCP [18][19], and so common

rules of practice dictate that routers should not mis-sequence

packets. 

In a second paper, Chang et al. [20] propose two different

solutions that bound the amount of mis-sequencing, enabling

the addition of a finite resequencing buffer after the second

stage. This is similar to the parallel packet switch (PPS) [21].

Nevertheless, the first scheme proposed in [20] either requires

up to  memory accesses per time slot in any second-stage

input (for packets that arrived to the switch at the same time), or

needs to use a complex buffering mechanism. The second

scheme, EDF, needs to retrieve the packet with the smallest

timestamp from a queue, making it hard (but not impossible) to

implement in a high performance switch. 

In this work, our goal is to design a two-stage switch with the

same throughput advantages. Instead of bounding the amount of

mis-sequencing, our approach prevents mis-sequencing from

taking place, eliminating the need for a resequencing buffer. 

In the remainder of this paper, we present an algorithm, called

“full frames first” (FFF) that leads to an average packet delay

within a constant from the ideal output queuing (OQ), and

therefore reaches the same throughput as OQ. It uses three-

dimensional queues (3DQs) (which are an extension of VOQs)

to avoid packet mis-sequencing. FFF comes at a cost: the 3DQ

queueing structure is more complex than simple VOQs; and

although simple, FFF is not as trivial as the deterministic

sequence of configurations. 

This paper is organized as follows. We first describe Chang’s

switch architecture and the EDF algorithm. Then we introduce

3DQ and show how it helps prevent mis-sequencing by giving

some choice to the external outputs. Finally, we present the FFF

algorithm, showing that it has no mis-sequencing and proving

some theorems on its delay and throughput. 

II.  SWITCH ARCHITECTURE

A.  Definitions

Throughout this paper, we’ll use the terms “packets” and

“cells” interchangeably to designate fixed-size cells. We'll

denote the number of switch ports by , and assume .

The switch architecture that we will use as the basis for this

paper is taken from [20], and shown in Figure 1. Although it is

more complex than the basic structure in [16], the additional

queues in the first stage help to limit the amount of mis-

sequencing. The switch architecture consists of two stages of

switching. The inputs of the first stage are called external inputs

(EIs), and numbered . The outputs of the first stage,

called internal outputs (IOs), are collocated with the inputs of

the second stage, called internal inputs (IIs). IOs and IIs will be

used interchangeably in this paper, and are numbered

. Finally, the outputs of the second stage, called

external outputs (EOs), are numbered .

Let’s follow the path of packets through the switch.

1. First, a flow splitter labels each packet in EI  as belonging to

a given flow , where  is the EO to which this packet is

destined. There are therefore  possible flows per EI repre-

senting the  different EOs to which the packets may be des-

tined.

2. A load balancer sends all the packets from  to the 

VOQ1s (corresponding to the  IOs), in a round-robin man-

ner - i.e. the first packet from a given flow is sent to the

VOQ1 for IO , the second one is sent to the VOQ1 for IO ,

and so on, independently of the packet arrival times. Because

the load balancers are not necessarily synchronized with the

sequence of configurations of the first-stage switch, arriving

packets are buffered and do not necessarily immediately

leave the VOQ1s. Note that the inputs of the VOQ1s are the

EIs, their outputs are the IOs (collocated with the IIs), and

there is a different load balancer for each flow. 

3. The VOQ1s are served in deterministic order by the first-

stage switch, and when their turn comes the packets leave

their VOQ1 and pass through the first-stage switch.

4. After leaving the first-stage switch the packets are queued in

the VOQ2s. The inputs of the VOQ2s are the IIs, and their

outputs are the EOs.

5. The VOQ2s are served in deterministic order by the second-

stage switch, and when their turn comes the packets leave

their VOQ2 and pass through the second-stage switch.

6. Finally, the packets leave the second-stage switch and exit

through the EO.

The following property of the switch will prove useful in this

paper (proved in [20]).

Property 1  If a packet arrives to the switch at time , it will

arrive to the VOQ2s no sooner than , and no later than .

B.  EDF: Example of Algorithm Using This Switch Architecture

Suppose that two packets belonging to flow  arrive back-

to-back at EI . Because they may be placed in different VOQ2s

at the second stage, they may both experience very different

delays through the switch, and may become mis-sequenced by

an arbitrary amount.
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Figure 1: Switch Architecture
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The earliest deadline first (EDF) algorithm prevents mis-

sequencing by serving cells in the VOQ2s in the order that they

arrived to the switch, rather than strictly from the head of line.

EDF has the following properties, proved in [20].

Property 2  Packet mis-sequencing is bounded by .

Note that it is therefore possible to add a finite resequencing

buffer after the switch for each external output.

Property 3  The packet delay in EDF is bounded by the sum

of the packet delay in a first-come-first-served (FCFS) OQ

switch, and a constant equal to .

This implies that the EDF algorithm has good delay and

throughput properties, since it follows an FCFS OQ switch

closely. 

However, EDF requires up to  timestamps to be com-

pared at every time-slot in order to determine which cells to ser-

vice, where  is the maximum length of a VOQ2. This

makes the EDF algorithm difficult to implement in practice. In

what follows, we will first show how to simplify the EDF algo-

rithm, and then eliminate the need for a resequencing buffer at

the external outputs.

III.  3DQ, AN EXTENSION OF VOQ

A.  The Return of HOL Blocking

Consider a packet, , that sits in the VOQ2 . We’ll

assume that  was the earliest arriving packet to the switch

among all packets in its VOQ2 , but that  is not currently

sitting at head-of-line (HOL) in its VOQ2. Packet  is obvi-

ously the earliest arriving packet of its flow  in VOQ2

, and therefore sits in front of the other packets of its flow

in VOQ2 . However, it is blocked by packets ahead of it

that arrived later to different external inputs and are also sched-

uled to depart from EO . This is classical HOL blocking, and

the solution is to subdivide each VOQ2 into a separate queue for

each external input. 

B.  Three-Dimensional Queueing

VOQ2s transform one-dimensional queues into two-dimen-

sional queues, one per (input, output) pair. There are therefore

 VOQ2s. In this switch, we will use three-dimensional

queues (3DQs), with a different queue per ; hence, there

are now a total of  3DQs. From hereon, we’ll assume that we

replace the VOQ2s by 3DQs. 

C.  An Application of 3DQ: EDF-3DQ

With 3DQs, the earliest cell for  is always the HOL cell

in its queue. Therefore, if we want to use the EDF algorithm

with a 3DQ structure (we’ll call it the EDF-3DQ algorithm), we

only need a comparison among  timestamps, instead of a

comparison among  timestamps. This simplification

comes at the cost of using  3DQs instead of  VOQ2s.

Figure 2 compares a VOQ2 structure with a 3DQ structure for

a given II. The numbers on the packets represent their flow 

and their arrival time to the switch, and the packets with a bold

border are the earliest ones in their VOQ2. The figure illustrates

how HOL blocking with VOQ2s is solved using a 3DQ struc-

ture. For instance, in the VOQ2 , packet  from  is

blocked by the HOL packet  from , arrived later

( ). However, in the 3DQ structure, packet  is the

HOL of its 3DQ and is not blocked anymore.

Our next step is to eliminate the resequencing buffer by pre-

venting mis-sequencing from occurring in the first place. 

IV.  FULL FRAMES FIRST

A.  Background

FFF (Full Frames First) is an algorithm that maintains packet

order. 

To understand how FFF works it helps to understand how the

round-robin version of OQ works (called OQ-RR). Consider the

illustration of OQ-RR for one output in Figure 3, where all

packets are assumed to have the same output destination. The

numbers on the packets correspond to the order in which they

will be serviced, assuming no future arrivals. Therefore, OQ-

RR will service packet 5 before packet 6, even if packet 5

arrived later. Note that because the average delay is independent

of the order in which the packets are serviced, OQ-RR will have

the same average delay as OQ-FCFS (the FCFS version of OQ).

Also, note that OQ-RR is work-conserving (i.e., if there is at

least one packet in the queue, then OQ-RR is not idle).

Now, assume that the algorithm doesn’t deal with packets, but

with frames, where one frame consists of  packets. The new

algorithm, called Frames-RR, first services all full frames in

round-robin order (where a frame is considered to be full if its

 slot contains a packet). When there are no full frames

requiring service, it services non-full frames in round-robin

order. For instance, in Figure 4, the frames are serviced in the

order indicated. First, the frames 1 through 5 are serviced

because they are full, including frame 3 which is considered full

because its last slot is occupied by a packet. Afterwards, the

non-full frames 6 and 7 are serviced in a round-robin order. 

Frames-RR is clearly not work-conserving for packets. How-
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ever, it is work-conserving for full frames, in the sense that if

there is at least one full frame left, then there is at least one full

frame being serviced. 

B.  FFF: A Combination of Frames-RR and 3DQs

FFF applies Frames-RR to the 3DQs in the second-stage of

the switch. To understand its operation, consider external output

. We’ll define a cycle to be the set of  consecutive time slots

during which EO  receives cells successively from IIs 

through , and we’ll define the candidate set of 3DQs for

 as .

Assume that the last serviced cell in the candidate set came

from II . Then, because of the properties of the load-bal-

ancer, we know that the next in-order cell for the flow  will

come from II  (modulo ). Let  be the pointer to

the II of the next in-order cell: . 

For instance, if the last cell was read from II , then the next

in-order cell will necessarily be read from the II numbered:

. Further, we know that if cell  is in front of

cell  in any 3DQ, then  necessarily arrived to the switch

earlier than . Therefore, if there is any cell from flow 

that is head-of-line of its 3DQ in II , then this cell must be the

next in-order one. 

We define the frame for  as

, and we will

say that frame  is full if every 3DQ  for

 is non-empty. We can see that if the frame is

full then its next in-order cell is in 3DQ , the one after

is in , and so on, up until . In other words,

a frame  is said to be full if, and only if, it is possible to

transfer in-order cells from  up until . This is

the key to preventing the cells within a frame from becoming

mis-sequenced.

In FFF, an external output reads all the cells in a full frame

from one external input, before moving on to read a full frame

from the next external input. External output  uses the round-

robin pointer  to remember which EI the last full frame

came from. In this manner, each external output gives an oppor-

tunity to each external input in turn to send a full frame to it.

When there are no more full frames, EO  serves the non-full

frames in round-robin order, using the pointer . 

More precisely, the following three computations are per-

formed by external output  at the beginning of every cycle:

1. Determine which of the frames  is full, where

. 

2. Starting at , find the first full frame. If the first full

frame arrived from EI , then , modulo .

If there is no full frame,  doesn’t change.

3. If there is no full frame, starting at , find the first non-

full frame. Update , modulo .

C.  Illustration of the FFF Algorithm

Assume that at the beginning of a cycle for a given EO , the

3DQs are in the states shown in Figure 5. In the figure, the

3DQs have been rearranged so that all of the queues containing

cells from a given external input are adjacent to each other. In

practice, of course, the queues are not arranged like this, but

they have been redrawn to help explain the algorithm. The num-

ber in each packet represents its sequence number within its

 flow. The numbers above the frames (in bold) indicate

the order in which they will be served. Assume that there are no

further arrivals.

• Initially in the example, , and frame

pointers are ,  and .

• At the first time-slot, FFF serves the first full frame that

arrived from external input . The first full frame

is , and so FFF serves it over three

consecutive cell times, delivering the three cells in order to

EO k. Pointers are updated: , .

• FFF then serves the three cells from external input 1 in

frame , then updates ,

. According to our definition,  is a

full frame from external input 2, even though it only con-

tains one packet. FFF serves it and updates the pointers.

Since there is no full frame from external input 3, the next

served full frame is , and then . The pointers are

now: , and . 

• There are no full frames left. FFF serves the non-full

frames in round-robin order: ,  and . Point-

ers are updated to , , and

. Note that the cell numbered  is not

7

frame

Figure 4: Frames-RR example

k N
k 1

N
i k,( ) i 1 k, ,( ) i 2 k, ,( ) ... i N k, ,( ), , ,{ }

jlast
Fik

jlast 1+ N pik
pik jlast 1(mod N)+←

2

pik 2 1+ 3= = C
C′ C

C′ Fik
3

i k,( )
f i k,( ) i pik k, ,( ) i pik 1+ k, ,( ) ... i N k, ,( ), , ,{ }=

f i k,( ) i j k, ,( )
j pik … N, ,{ }=

i pik k, ,( )
i pik 1+ k, ,( ) i N k, ,( )

f i k,( )
i pik k, ,( ) i N k, ,( )

k

pff k( )

k

pnff k( )

k
f i k,( )

i 1 … N, ,{ }∈
pff k( )

iff pff k( ) iff 1+← N

pff k( )

pnff k( )

pnff k( ) pnff k( ) 1+← N

k

Packets 
from EI 3 
to EO k

192

191194

Packets 
from EI 1 
to EO k

II 1
II 2
II 3

190193

195

196

198

p1k

ff 2ff 4nff 2

5760

138

62 59

58

Figure 5: Illustration of the FFF algorithm for EO k.
Note that the 3DQs have been rearranged so that all

of the queues containing cells from a given external

input are adjacent to each other. 

Packets 
from EI 2 
to EO k

II 1
II 2
II 3

II 1
II 2
II 3

61

136

137

139

140

142

143

p2k

p3k

ff 3

ff 1

ff 5nff 3

nff 1

pff(k), 

pnff(k)

i k,( )

pff k( ) pnff k( ) 3= =

p1k 1= p2k 3= p3k 1=

pff k( ) 3=

ff1 136 137 138, ,{ }=

p3k 1← pff k( ) 1←

ff2 190 191 192, ,{ }= p1k 1←

pff k( ) 2← ff3 57{ }=

ff4 ff5

pff k( ) pnff k( ) 3= = p1k p2k p3k 1= = =

nff1 nff2 nff3

pff k( ) pnff k( ) 3= = p1k 2=

p2k p3k 3= = 198

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



serviced, because there is no ordered cell in its frame at II

 (the expected cell numbered  is still queued

in its VOQ1). Similarly,  and  will not be serviced

as long as there is no cell at II .

D.  Pros and Cons of FFF

The main advantage of FFF is that packets are not mis-

sequenced, and so we can eliminate the resequencing buffer at

the external outputs. 

It is also interesting to compare FFF with iSLIP [5], which is

a widely used practical heuristic for single-stage crossbar

switches:

1. FFF has 100% throughput whenever OQ has 100% through-

put (proved in Section V.C). iSLIP can only guarantee 100%

throughput for Bernoulli i.i.d. uniform traffic.

2. The average packet delay for FFF is bounded by the sum of

the average packet delay for OQ (with the same traffic) and a

constant delay (proved in Section V.B). No delay bounds

exist for iSLIP. 

3. FFF appears straightforward to implement. For each time-

slot  there is only one EO  that begins its cycle. During

this time-slot  must first determine which, if any, frames

are full. It determines independently and in parallel for each

EI  whether or not the frame  is full, i.e. whether or

not there is a cell belonging to every 3DQ  for

. In other words,  uses  bits for

each EI , masks them using , and logically ANDs

them together. Finally,  uses an N-bit programmable pri-

ority encoder to identify the first full frame. This is the same

complexity as just one iteration of iSlip. It is also possible to

use an  version of FFF by exploiting slightly out-of-

date information, with similar delay and throughput proper-

ties. For brevity, this property is not developed in this paper.

4. Because of the predetermined, and non-conflicting schedule

used by both stages of switching, FFF does not need a cen-

tralized scheduler. It is sufficient for each external output to

schedule the frames (and hence cells) that it will receive. This

is not practical in iterative algorithms such as iSLIP which

need to be centralized because of the large amount of com-

munications between inputs and outputs. 

5. FFF does not require much information to be sent between

each internal input and each external output. First, let’s con-

sider the communication from an internal input to the sched-

uler at an external output. Each II receives at most one new

packet per time-slot, and it is known in advance from which

EI it comes, because of the predetermined sequence of con-

figurations. The II can tell the EO the packet’s destination

(and that a packet arrived) using  bits. Now let’s

consider the communications from the external output to an

II. Every time-slot ,  tells each internal input which

frame (if any) it will be reading in this cycle, requiring

 bits. 

6. FFF seems simple enough to be implemented in hardware. 

7. FFF seems well suited to optical switch fabrics based on

technologies such as MEMS [25][26], VCSELs [27], tunable

lasers [28], electro-holography [29], etc. This is for two rea-

sons. First, FFF allows the switch fabric to rotate through a

simple deterministic sequence of configurations, that are

known in advance. It seems reasonable to expect that for most

optical technologies, a fixed rotational pattern of configura-

tions is easier to implement and can be reconfigured faster

than if the pattern was unpredictable. For example, with

MEMs mirrors one could imagine a mirror with N facets that

rotates by a fixed amount each time-slot. Second, since both

stages are configured according to a fixed sequence, it may be

possible to replace them with a single switch that is config-

ured once per time-slot, with two cells transferred per config-

uration. In the first half of a time-slot, the switch transfers

cells for the first stage (from EIs to IOs), and in the second

half, it transfers cells for the second stage (from IIs to EOs).

However, FFF has some drawbacks.

1. FFF uses two switching stages instead of one. On the face of

it, this is similar to using a crossbar switch with a speedup of

two. In this case, there is a spatial speedup rather than a

speedup in time. However, notice that the two components

that normally limit the speed of the system — the bandwidth

of the memories at each stage, and the scheduler — run at the

same speed as the external line. 

2. FFF needs  buffers (first- and second- stage) instead of 

buffers. While it is possible to combine the buffers into 

shared buffers (if EIs and IIs share the same linecard), this

would double the memory bandwidth.

3. FFF uses  3DQs in the internal buffer, while single stage

switches usually use only  VOQs (thus requiring more

pointers, and a more complicated buffer management algo-

rithm).

4. FFF requires a load balancer at the first stage. 

V.  FFF PERFORMANCE

In this section we show that the average delay for the FFF

algorithm is less than the average delay for OQ plus a constant,

and that FFF has the same throughput as OQ. The proofs rely on

the observation that FFF is work-conserving for full frames.

A.  Definitions

For simplicity, we will only consider the cells destined to a

given EO . We’ll define the following values, as illustrated in

Figure 6. 

1.  is the cumulative number of cells destined to EO 

that have arrived to EI  up to and including time-slot . It is

therefore the index of the last cell from  that has arrived

to EI .

2.  is the total number of cells destined to 

that have arrived to the switch up until .

3.  is the index of the last cell in flow  to have arrived

to an II by the beginning of the current cycle, without any

cells missing from the flow’s FIFO ordering. We call the cells

that are in their FIFO order, without any cells missing in front

of them, the ordered cells. The total number of ordered cells

p1k 2= 197
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is . For instance, in Figure 5,

.

By definition, if  is the beginning of a cycle for EO  (that

is, , with l an integer), then 

when . In addition, as shown in Property 1,

 (assume that these values are

zero for ). 

4.  is the number of ordered cells that have already been

served by the second stage up until time-slot , and

. In Figure 5, .

5.  is the number of ordered cells queued in

the 3DQs that are destined to  (e.g., ).

6.  is the number of cells in full

frames already arrived to the 3DQs and destined to .

7. Likewise,  is the number of cells in

full frames that have already been served by the second stage. 

8.  is the

number of full frames queued in the 3DQs, and

. For example, in Figure

5, , ,

 and .

9.  and  are respectively the cumulative number

of services and the length of the queue in an FCFS OQ switch

of speed-up 1, where the cumulative number of arrivals is

. In other words, this represents an OQ switch with

arrivals as seen by the external inputs. 

10. Similarly,  and  correspond to what we will

call the delayed version of OQ, which is computed with a

cumulative number of arrivals equal to . In other words,

it represents an OQ switch of speed-up 1 with the same

ordered arrivals as seen by the IIs in the two-stage switch.

Note that some well-known properties of OQ apply: 

,

,

, and

 whenever  [24]. 

11. , where  is an integer, is any time-slot

when the cycle for EO  begins.

B.  FFF Average Delay Within a Constant from OQ 

In this section we will show that the average delay for FFF is

within a constant delay of the average delay for an OQ switch

for the same arriving traffic. 

We will first compare FFF with the delayed OQ, which is an

OQ having the same ordered arrivals as the second stage. We

will show that FFF is work-conserving for full frames, and

therefore services nearly as many full frames and as many cells

as the delayed OQ model, with a queue size almost as small.

This results in a bounded average delay difference with the

delayed OQ model (Theorem 1). Then we compare the delayed

OQ model with a regular OQ switch having the same packet

arrivals as the first stage. Using a delay bound, we finally show

that there exists a bounded average delay difference between

FFF and an OQ switch (Theorem 2).

We start by establishing that whenever there is at least one

full frame, the number of serviced full frames increases by one

in the next cycle.

Lemma 1  If , then .

Proof:   If , then there is at least one full frame in

the IIs. Thus, according to the FFF algorithm, at least one full

.
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Ao(t) arrived 
cells

BOQ(t) serviced 
cells

.

.

.

.

.

.

.

.

.

.

.

.

A(t) arrived 
cells

BOQ
D(t) ser-

viced cells

Figure 6: Illustration of terminology
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frame will be serviced. 

Since Lemma 1 shows that FFF is work-conserving for full

frames, Lemma 2 shows that the number of serviced packets is

close to the number of packets serviced by an OQ switch. 

Lemma 2   

Proof:   By induction on:

.

If ,  and ,

so the inequality holds. Now, let the inequality be true for . 

Case 1: . Then,

Case 2: . Using Lemma 1,

 

Since Lemma 2 shows that the number of packets serviced by

FFF is close to the delayed OQ in some sense, Lemma 3 con-

cludes that the queue size for FFF is bounded by the sum of the

queue size for the delayed OQ and a constant.

Lemma 3   and .

Proof:   Using the definitions and Lemma 2:

Similarly, 

.

The next two lemmas show that FFF efficiently uses band-

width in order to remove the packets from the queues. Since

FFF is work-conserving for full frames, Lemma 4 shows that if

there are  full frames at time , then exactly  full

frames will be served in the next  cycles. Lemma 5 gener-

alizes this idea and considers what FFF does with the remaining

packets when there are no full frames.

Lemma 4  

Proof:   If , then by definition  and

. Otherwise,  and we can iteratively

apply Lemma 1  times:

1. , thus  (from Lemma 1).

2. , thus , 

3. , thus , 

etc.

Finally, , thus

.

Hence .

Lemma 5  

Proof:   We already know from Lemma 4 that

. Now we need to show that during

the next  cycles, at least  cells will be

serviced. Let's distinguish between two cases.

Case 1: during these  cycles, the  EIs are each

serviced at least once in a round-robin fashion as non-full

frames (i.e.,  is incremented at least  times).

Note that there is no full frame to service any more if non-full

ones are serviced (since full frames have priority over non-full

ones). This implies that every cell that is in a non-full frame at

time  is either serviced in the round-robin among non-full

frames, or has been already serviced as part of a full frame that

has been formed since.

Case 2: during these  cycles, there are at least 

full frames serviced (note that , so there is

no other case by Dirichlet’s pigeon-hole principle).

Therefore, using Lemma 1 and Lemma 4:

By definition  for all , and the result follows. 

We have shown that  was tracking  with a delay

dependent on . Since we have linked  with

, we can find a first bound on the average delay for FFF

as a function of the average delay in the delayed OQ model.

This bound will be useful in order to compare FFF with the reg-

ular (non-delayed) OQ model.

Theorem 1  The average delay for FFF is less than the aver-

age delay for the delayed OQ plus a constant .

Proof:   We know that  and

 (Lemma 3 and Lemma 5).
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Therefore, 

(because  is a non-decreasing function), i.e.

. But we also know that:

.

Hence, .

This implies that the average delay for a cell coming at time 

is the delay that it would have under the delayed OQ algorithm,

plus at most . To see this, note that the average delay

does not depend on the order in which the cells are picked.

Thus, FFF has the same average delay as the FCFS algorithm

which has the same cumulative number of arrivals and depar-

tures as FFF (hereafter called FFF-FCFS). FFF-FCFS would

obviously satisfy the last formula. Therefore, the time spent by

a new packet in the internal outputs is  with the delayed

OQ, and at most  with FFF-FCFS. Hence

the difference is bounded by .

Finally, note that all computations up until now were for a 

that begins a cycle for output . If we choose any nonnegative

integer , then let  be the begin-

ning of the cycle to which  belongs, and let

. We get:

Hence,  and the result

is thus applicable to any time-slot .

Theorem 2  The average delay for FFF is less than the aver-

age delay for OQ plus a constant .

Proof:   We compare the delays for OQ and for the delayed

version of OQ. Let . We’ll first show that the

delay for any cell in the delayed OQ is less than its delay for

OQ plus .

For any time-slot s, let  be the time-slot that marks the

beginning of the cycle to which  belongs:

, and .

Then, according to the properties of the delayed OQ we have:

 

Let . Since packets don’t arrive before time-slot 0: 

Hence, since the delayed OQ and OQ are both FCFS, the dif-

ference of delay for each cell between those two systems will be

at most D, and the difference of average delay between FFF and

OQ will be at most .

It is worth asking if the delay difference (approximately

) is significant. For a high-speed router with 32 ports,

OC768 (40 Gb/s line-rates) and a cell size of 64 bytes,

 (the time taken for light to

travel approximately 10 miles). 

It is possible to improve this bound using a different algo-

rithm that would take into account the number of cells present

in the non-full frames, which FFF does not do. However, this

would increase the complexity and the communication in the

switch, and we believe that the trade-off is not worth it.

C.  FFF Has the Same Throughput As OQ

Let’s first provide a few definitions. Consider a switch with

traffic arrival rates  (from EI  to EO ), and total queue-

ing size , where  is the current time-slot. 

1. The load of the arrival traffic is:

. The arrival traf-

fic is said to be admissible if .

2. The switch is said to be strongly stable if

 [6][22]. 

3. The switch is said to have 100% throughput if it is strongly

stable whenever the arrival traffic is admissible. Similarly, it

is said to have a throughput of  if it is strongly stable when-

ever .

We have seen that there exists a bounded average delay dif-

ference between FFF and an OQ switch. As a consequence, FFF
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has the same throughput as OQ, as Theorem 3 illustrates.

Theorem 3  FFF and OQ have the same throughput.

Proof:   Let  and  be the total queueing size

at time-slot  in a switch implementing OQ and FFF, respec-

tively. Also, let , and assume that the cycle

for EO  begins at , with . Using

Lemma 3 and the proof for Theorem 2, we get:

Taking into account both the buffering in the 3DQs for the 

external outputs and the buffering in the VOQ1s from the 

external inputs, we get (using  for EO ):

Thus, , since OQ is work-

conserving. Hence the result.

Note that this theorem is quite strong, because OQ is an ideal

switch from a throughput point of view. In addition, note that

the proof shows that at any time, the buffering needed with FFF

is within a constant from the ideal buffering needed with OQ.

Property 4  FFF has 100% throughput with admissible Ber-

noulli i.i.d. arrival traffic.

Proof:   OQ is known to have 100% throughput with admissi-

ble Bernoulli i.i.d. arrival traffic (this can be either proved

directly, or by using the fact that OQ is work-conserving, thus

, with Maximum Weight Matching

(MWM) having 100% throughput [7]). The result follows using

Theorem 3.

Property 5  Assume that the arrival traffic patterns from EI 

to EO  are -upper constrained. If the traffic is admis-

sible, then FFF has 100% throughput.

Proof:   Let  be the cumulative number of arrivals for

cells going from  to  at time-slot , and let

. Then, by definition, for all 

and , we have .

This implies that , thus

arrivals to any external output are -upper constrained.

Since , the maximum queue length size in OQ is  [24].

The result follows using Theorem 3.

VI.  CONCLUSION

Over the last few years, there have been many results that

show the conditions under which a single-stage crossbar switch

with input queues and no speedup can achieve 100% through-

put. To our knowledge, there have been no results that bound

the difference in average delay between an ideal output queued

switch and an input queued switch without speedup. Such

bounds have only been possible when the switch runs with a

speedup of at least two, has two stages of buffering (input and

output queues) and uses a complicated (impractical) scheduling

algorithm. 

The two-stage switch introduced by Chang achieves a 100%

throughput as well as a bound on the delay between it and an

output queued switch. This is achieved without speedup and

without a complicated scheduling algorithm, and therefore rep-

resents an important step towards efficient, high capacity

switches with delay guarantees.

In its simplest form, the two-stage switch mis-sequences

packets, hence motivating the work presented in this paper. The

Full Frames First algorithm prevents mis-sequencing while

maintaining the throughput and delay properties of the basic

switch. While it clearly introduces more complexity, the algo-

rithm appears practical at high speed.

We believe that the most interesting application of the two-

stage switch is for use as the optical switching fabric in an oth-

erwise electronic Internet router. The switch fabric in a router is

generally limited by its power consumption, its size and the

need for a complex scheduler. While optics can reduce both size

and power, a single stage optical crossbar switch still requires

an electronic scheduler. The two-stage switch can be incorpo-

rated without the need for a separate scheduler; because the

switch moves through a deterministic sequence of configura-

tions, and so scheduling packets consists only of distributing a

timing reference to the linecards. Furthermore, since the two

stages of the switch are configured according to a fixed

sequence, it may be possible to replace them by a single switch

that is configured once per time slot, with two cells transferred

per configuration. 
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