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ABSTRACT

Applications like distance learning and teleconferencing of-
ten require compression of images that contain both text and
graphics. Because text and graphics have different prop-
erties, a compression scheme can benefit by treating the
textual and graphical portions of such compound images
separately. In this paper, we propose new methods, called
Transform Coefficient Likelihood (TCL) schemes, for sep-
arating the textual and graphical portions of a compound
image. TCL schemes examine the DCT coefficient values
of an 8 x 8 block. For each coefficient, they refer to stored
histograms that give the likelihood that a certain value oc-
curs in a text block, or in a graphics block. They then ex-
amine the differences in these two likelihoods over all the
coefficients in the block to decide whether it contains text
or graphics. Experimental results show that the best TCL
methods significantly outperform previously proposed tech-
niques.

1. INTRODUCTION

Compression concerns itself with the reduction of redun-
dant, or less perceivable information. Consider common
DCT-based compression schemes. These achieve compres-
sion in continuous tone images by exploiting the correlation
among neighboring pixels. Text has different properties,
however, and when it is compressed using a scheme devel-
oped for images, the compressed text will generally be at a
lower quality for a given rate than surrounding graphics. It
is beneficial, therefore, to identify regions in an image that
contain text and treat them differently.

In this paper we present methods to identify text in an
image and then compare the effectiveness of these methods.
To facilitate this comparison, we implement each scheme as
a function that takes as an input an 8 x 8 block of pixels
or corresponding transform coefficients, and returns a real
number we call the activity, a. If the activity is above some

~Isaac Keslassy is supported by a Wakerly Stanford Graduate Fellow-
ship

0-7803-6725-1/01/$10.00 ©2001 IEEE

750

threshold, the scheme has decided that the 8 x 8 block is
text.

To be more precise, let X € %94 be the vector of inten-
sity values (or DCT coefficient values) for a block. Then,
let each scheme be s = {a,, t5}, where a, : R6* — R is
a function over the vector X and ¢, € R is the threshold
value for the scheme. Each scheme makes a decision D, as
follows:

text
graphics

if a;(X) > t;
otherwise

D0, = {

The following pseudo-code illustrates:

foreach block in the image:
load block values to X
compute block activity a(X)
return block type: D(a(X))
end of loop

We organize this paper as follows. We begin in Section
2, by reviewing text identification methods previously in-
troduced in the literature. Then, in Section 3, we introduce
our new TCL schemes. In Section 4 we present the method-
ology that we use to assess and compare the performances
of the various schemes. Finally, in Section 5 we show how
well the schemes performed relative to one another.

2. STATE OF THE ART

Previously proposed techniques for text location in images
include both methods that examine pixel values in the spa-
tial domain and methods that examine DCT coefficient val-
ues. In our work, we implement these schemes to provide
a basis for assessing the new schemes that we present in
Section 3.

2.1. Spatial-Domain Schemes

The algorithms, Range, Variance, Absolute Deviation, and
Sobel Filter examine the actual pixel values in an 8 x 8
block [1], [2].



Range is based on the observation that text blocks are
likely to have a higher dynamic range than non-text blocks.
For Range, the activity value for a block is simply the range
of its pixel values.

Variance computes the activity as the pixel variance in a
block. Text blocks are likely to have higher pixel variances
than graphics blocks.

Absolute Deviation, a similar scheme, computes the ac-
tivity for a block as the mean absolute deviation from their
average intensity of its pixel values.

The Sobel Filter scheme is based on the observation
that text blocks are likely to have more edges than graph-
ics blocks [1]. Based on the Sobel edge-detection filter, it
computes the activity for a block as the sum of its pixels’
Sobel Gradients.

2.2. DCT-Based Algorithms

The following algorithms are functions over the DCT coef-
ficients of an 8 x 8 block. They exploit the differences be-
tween text and graphics blocks in the distribution of energy
among their DCT coefticients. Figure 1 shows the mean ab-
solute values of the 64 DCT coefticients. arranged in JPEG
zig-zag scan order, for a typical compound image [3]. Plot-
ted on a logarithmic scale, the top curve is for 8 x 8 blocks
that contain text and the bottom curve is for blocks that con-
tain graphics. Notice that the mean absolute value of DCT
coefficients is much greater for text than for graphics, espe-
cially towards the higher frequencies.

Text coefficient | *
Graph coefficient

Mean Absolute Value

40
Coefficient Number (in zig-zag scan order)

70

Fig. 1. Mean absolute values of DCT coefticients.

One DCT-based scheme that exploits the ditterences ap-
parent in Figure 1, DCT Energy, takes as the activity value
the squared sum of DCT coefticients 2 through 64. Let {¢,, }
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be the DCT coefficients of an 8 x 8 block arranged in zig-
zag scan order. The activity for the scheme is then:

64
2
a= E lons

n=2

DCT Absolute Sum, a similar scheme. replaces the square
in the energy calculation with an absolute value, which is
easier to compute [1]. .

DCT 18 Absolute Sum uses only 18 of the 64 coefficients
to compute the sum. These were determined to be the most
reliable coefficients for separating text and graphics in [2].
For this scheme, then, the activity is given by:

a= Z fen|

nes

Not all DCT-based schemes simply sum coefficient en-
ergies. DCT Bitrate, the scheme proposed by Konstantinides
and Tretter, estimates how many bits it would cost to run-
length encode a block [4]. It reasons that since text is more
costly to encode than graphics. a high cost in bits indicates
text. The scheme estimates that each non-zero JPEG-quan-
tized transform coefficient. ¢,,. in a block requires log., |, |+
4 bits. The activity value for this scheme is then:

a= Z [log: (énl) + 4]

En#0

3. TRANSFORM COEFFICIENT LIKELIHOOD
(TCL) SCHEMES

Having reviewed the schemes from the literature, we now
introduce our TCL schemes. These rely on the relative fre-
quencies ot occurrence of coefficient values. While the al-
gorithms in Section 2.2 treat each considered transform co-
efficient identically. TCL schemes make use of histograms
specific to each coefficient. They employ two histogram
tables for each of the 64 coetficients. One table stores the
relative frequencies of occurrence of the coefficient’s values
given that a block contains text. The other does the same for
blocks that contains graphics. TCL schemes look to these
tables to determine the likelihood of each coefficient value
given that a block contains text or given that a block con-
tains graphics. They produce an activity value based on
these likelihoods.

In order to reduce the size of the tables we quantize the
coefticients according to the JPEG quantization matrix and
limit their values to [—255. 253] [3].

We populate the text tables using a set of 5 images that
contain only text. A histogram is compiled for each quan-
tized coefficient by counting the number of times each of
the coefficient’s 511 possible values occur in the training
set. Then we normalize the histograms to sum to one. In a



similar manner we generate a corresponding set of 64 tables
of coefficient frequencies for graphics blocks.

In TCL schemes, we use these tables to estimate the
probability that the nth quantized DCT coefficient takes on
the value &,, given that the block contains text or graphics.
We denote these conditional probabilities:

p(Cnltext) or p(énlgraphics)

Let € be the vector of quantized DCT coefficients. We
can decide a block contains text according to the Maximum
A Posteriori probability (MAP) rule. According to the MAP
rule we decide a block is text if:

plteat|C) > p(graphics|C)
Using Bayes’ Rule the expression can be rewritten as:

p(Cltext)
p(C|graphics) ~

p(graphics)
p(text)

Now we make two simplifying assumptions:

I.  p(text) and p(graphics) are known.

2. {én|text}i<n<es and {én|graphics}icn<ea
are sets of independent random variables.

Using these assumptions we can arrive at the scheme we
call the MAP Rule:

64
a= Z[logp(énltewt) — log p(énlgraphics)]
1

However, these assumptions don’t generally hold. More-
over, this scheme is overly sensitive to the difference be-
tween the exact pmf of the coefficients and the approxi-
mation stored in the tables. Therefore we explore other
schemes that operate on the differences in the marginal con-
ditional distributions of the 64 coefficients.

AP is the simplest of these schemes. Its activity score
is given as:

64
a= Z [p(énltext) — p(énlgraphics))
n=1
Delta Probabilities - High Probability, a variation, biases
the score towards the coefficients with higher probabilities
by using the difference in the squares of probabilities:

64
a= Z [p” (z,|text) — p? (xn|graphics)]
n=1

Another variant, AP - High Difference biases the score to-
wards coefficients with the biggest differences:

64
a= Z [p(énltext) — P(én|y7‘aphics)]3

n=1
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Scheme activity
Range range of intensities
Variance variance of intensities
Abs. Deviation mean abs. dev. of intensities
Sobel Filter Sum of Sobel Gradients
DCT Energy S E
DCT Abs. Sum S lenl
DCT 18 Abs. Sum nes 1enl
DCT Bitrate 2. <0108, (1én]) + 4]
MAP Rule St llog p(éntext)—
log p(én|graphics)]

AP D o164 AP,
AP High Prob. > [p?(énltezt)—

o P’ (énlgraphics)]
AP High Diff. S AP?
AP Horizontal 2 i IAP;
AP HF > i AP

Table 1. Summary of schemes.

Our final set of variants favors higher frequency DCT
coefficients. High frequencies indicate edges in the block,
a characteristic of text. This set of schemes consists of AP
Horizontal, and AP HF.

Table | gives the activity values for these schemes using
the notation:

AP; ; = [p(é jltext) — p(é; jlgraphics)]

where ¢ and j are the quantized coefficient’s row and col-
umn positions, respectively, in the matrix of DCT coeffi-
cients.

4. EVALUATION METHODOLOGY

Before evaluating the performance of the text identification
schemes presented in the previous sections, we need to find
an appropriate threshold value for each scheme. Recall that
each scheme is a function over a 8 x 8 sized block that
returns a real number we call the activity, a. If the activity
is above a threshold, we label the block text.

To find appropriate thresholds, we use a training set of
images whose text-blocks have already been identified man-
ually. For each scheme we then vary the threshold over a
suitable range and choose the one that gives the best match
with the hand-generated answers. By “best-match” we mean
the threshold value that gives the lowest error score:

(%False Negative) + (%False Positive)
2

Error Score =

False Negatives are text blocks mistakenly labeled graphics.
False Positives are graphics blocks wrongly labeled text [5].



Using percentages prevents the biasing of the threshold in
the case that there are more of. one type of block than the
other in the training set.

Thus, we train each algorithm by choosing the threshold
value that minimizes the error score over a set of training
images. Using these experimentally optimal thresholds, we
then produce error scores for each algorithm over a differ-
ent set of images. Having disjoint training and testing sets
forces the algorithms to exhibit robust behavior with respect
to threshold to perform well in our evaluation.

Please note that the histograms used by the TCL schemes
are compiled over a set of ten images that is independent of
the training and testing sets.

5. EXPERIMENTAL RESULTS

Error score results for the various schemes are tabulated in
Figures 2 and 3. The results in figure 2 were generated using
a set of 10 images that contained graphics and black, typed
text. The results were averaged over ten trials where in each
trial one image was held out as the test image and the re-
maining nine were used as training. We permuted the set of
images in each successive trial so that in ten trials each im-
age served as the test image exactly once. Figure 3 tabulates
results when ten, more heterogenous, images were added to
the set. These images included handwritten text and vary-
ing text hues. Here we averaged over twenty trials. The
graphs show that our new algorithms consistently perform
better than previous methods. In particular, our AP - HF
scored 22.8% better than the best previous method for the
ten image set and 10.0% better for the more heterogenous
20 image set.

Delta High P
Delta High Dift.
Delta Horizontal
Delta HF

8
Error Score in Percent

9 10

Fig. 2. Comparison of Error Score results for a set of 10
testing images that contain graphics and black, typed text.
(TCL schemes shown below the dividing line).
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Fig. 3. Comparison of Error Score results for a set of 20
testing images that contain heterogenous text.

6. CONCLUSION

In this paper, we have proposed a new set of schemes for
separating the textual and graphical portions of an image.
These methods, which we call Transform Coefficient Likeli-
hood (TCL) schemes, differ from previously proposed meth-
ods in that they are based on the relative frequency of occur-
rence of transform coefficient values. As shown, the most
effective scheme in our TCL family, AP HF, significantly
outperforms previously proposed techniques.
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