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Abstract—Today, designers of network processors strive to
keep the packet reception and transmission orders identical, and
therefore avoid any possible out-of-order transmission. However,
the development of new features in advanced network processors
has resulted in increasingly parallel architectures and increasingly
heterogeneous packet processing times, leading to large reordering
delays.

In this paper, we introduce novel scalable scheduling algorithms
for preserving flow order in parallel multi-core network processors.
We show how these algorithms can reduce reordering delay while
adapting to any load-balancing algorithm and keeping a low imple-
mentation complexity overhead. To do so, we use the observation
that all packets in a given flow have similar processing requirements
and can be described with a constant number of logical processing
phases. We further define three possible knowledge frameworks of
the time when a network processor learns about these logical phases,
and deduce appropriate algorithms for each of these frameworks.

I. INTRODUCTION
A. Background

Network Processors (NPs) are specialized software-
programmable architectures in routers, switches and network
cards. NPs are designed to process packets at high speeds, and
especially to implement such diverse functions as forwarding,
classification, protocol conversion, Deep packet inspection
(DPI), SSL and firewalling [1]–[4].

NPs are required to avoid out-of-order transmission of the
packets, because out-of-order packets can disrupt the local
pipeline logic of the router, as well as significantly decrease the
throughput of TCP flows [5], [6]. Unfortunately, in recent years,
two trends have made it increasingly hard for NP designers to
keep packets in order without suffering from a large additional
delay. First, NP architectures are becoming increasingly parallel.
For instance, they often rely on many parallel processing cores
(e.g., the Cavium CN68XX [7] or the AMCC nP7310 [8]), or
on a hybrid combination of parallel and pipeline cores (e.g., the
EZChip NP-4 [9] or the Netronome NFP-32xx [10]). Second,
packet processing needs are becoming increasingly heteroge-
neous. NPs need to implement a growing number of increasingly
complex features, such as advanced VPN encryption, decompres-
sion, VoIP session border controller (SBC), video call admission
control (CAC), per-subscriber queueing, and hierarchical classi-
fication for QoS [7], [11], [12].

As a consequence of these two trends of parallel architectures
and heterogeneous processing delays, many packets with small
processing times may be ready to leave the NP, but need to
wait for a few packets that arrived earlier and are still stuck in
heavy processing tasks. Therefore, these NPs exhibit high and

unpredictable reordering delays, which conflict with the delay
requirements that NP designers need to meet.

Current reordering algorithms typically do not handle this
heterogeneous traffic gracefully. In particular, as detailed below,
they either (a) cause a needless large reordering delay, or (b)
rely on a static load-balancing through hashing and can cause a
lower throughput.

In this paper, our goal is to provide a scalable algorithm
that reduces the reordering delay, while adapting to any load-
balancing scheme. Thus, the NP designer can keep using the
same load-balancing scheme that achieves high throughput, and
just apply our algorithm to reduce the reordering delay.

We introduce a new model for NPs. In particular, we make
the observation that all the packets of a given flow can typi-
cally be divided into an equal number of well-defined logical
processing phases, which correspond to their similar processing
requirements.

Next, we introduce three algorithms, called Reordering Per
Processing Phase (RP 3), which leverage this knowledge to
reduce the reordering delay. We further illustrate how these
algorithms are implemented.

Finally, using extensive simulations based on both synthetic
traffic and real-life traces, we analyze our RP 3 algorithms and
show that their reordering delays are negligible when compared
to previously known techniques. We also illustrate how a lower
variability in the delays of the logical processing phases leads
to significant improvements in the reordering delays of our
algorithms.

Our online technical report [13] presents additional technical
details, including the algorithm under Framework 2, the proofs
of correctness of the various algorithms, a discussion of the
implementation complexity, and extended simulations.

B. Related Work
Recent research works have described several architectures

that aim to reduce the reordering delay. First, pipeline-based ar-
chitectures without parallelism clearly preserve the packet order.
However, they are hardly scalable, because of the heterogenous
requirements of the packets, the synchronization requirements,
and the granularity of the processing commands [14]. Thus, we
further discuss only parallel architectures.

Statically mapping each flow to a single core using hashing
is another popular way to intrinsically avoid reordering [15].
However, it results in an insufficient utilization of the cores,
and therefore in a lower throughput, due to the fact that several
elephant flows may map to the same core [16]. Moreover, it is
possible to adapt the load-balancing scheme by using feedback



on the core utilization in order to increase throughput [17],
[18]. However, this can also cause packet reordering [19], and
therefore requires an ordering mechanism. In addition, all these
approaches fix the load-balancing scheme, while we would like
to adapt to any potential scheme.

There are several algorithms for keeping packet order without
changing the load-balancing scheme. First, the NP can allocate
a global sequence number to every arriving packet [20], [21].
However, this solution also incurs a high reordering delay,
because all packets are treated as a single flow, the order of
which has to be preserved. A second, ideal approach is to rely
on per-flow sequencing [21]–[23], thus providing a minimal
reordering delay. However, as explained in [16], it is not scalable
to a large number of network flows because of the large number
of needed counters. A third method to avoid packet reordering is
to keep an inter-thread signaling system between the cores [20].
However, in NPs with a high degree of parallelism and a high
clock frequency, this method can be complex to implement.

A fourth and last appealing approach is to statically aggregate
flows by hashing the flow identifier in the packet header into
several ordering domains [16]. A different sequence number
generator is then assigned for each ordering number. The flow
identifier may for instance consist of its 5-tuple and its input
interface. In each of the ordering domains, the order of the
packets is preserved. However, an unnecessary reordering delay
occurs between flows with different processing requirements that
are hashed into the same ordering domain. In particular, this
method suffers from the fact that flows in the same domain do
not necessarily have similar processing delays. By contrast, we
suggest to base reordering domains on the processing phases,
thus following natural flow properties rather than using arbitrary
hashing. Note that the two solutions can also be combined, by
simultaneously distinguishing flows based on an arbitrary hash
as well as on the number of processing phases.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

Consider a network processor (NP) with N processing ele-
ments (PEs), which can also be general-purpose CPU cores. We
allow for any load-balancing scheme. Therefore, each arriving
packet can be allocated to any arbitrary PE for processing. As
commonly assumed, we consider a single stream of incoming
packets [16], [22]–[25]. We allow arbitrary arrival times of
the packets, and assume infinite buffer sizes. Also, we neglect
the different priority levels of the flows. The management of
the packets in the NP is performed with packet descriptors,
which hold all the necessary information for packet processing,
including pointers to the packets in the main buffer.

We mandate that packets from the same flow depart in the
order of their arrival. When a packet needs to wait for another
packet to make sure that it departs in order, it experiences a
reordering delay. Our goal is to reduce the average reordering
delay, using a simple and scalable algorithm.

B. Assumptions
The main assumption in this paper is that the processing

requirements of all the packets from the same flow can be divided
into an equal number of logical processing periods, denoted as
phases (as in [24]). For instance, all the packets of a given flow
may only require forwarding, while all the packets of another
flow may need forwarding, deep packet inspection, and IPSec
processing.

This requirement is reasonable in practice because phases are
only logical, and we do not mandate that all phases correspond
to the same number of cycles. For instance, if the first and last
packets in a flow require a higher number of phases because
the network processor needs to open or close flow-based states,
then we can simply insert some empty dummy logical phases in
the other packets. Of course, a higher variability of the actual
time of each phase will adversely impact the reordering delay
of any algorithm based on this assumption. We also allow large
processing functions such as deep packet inspection to be further
subdivided into different logical phases, as long as all the packets
of a given flow experience the same subdivision. Finally, we
denote by Φ ∈ N the maximal possible number of processing
phases per packet.

In practice, the required number of processing phases can
be obtained after parsing the packet header, and comparing
its content to the user-configured rules for specific flows or
protocols. Therefore, the NP does not need to store the total
number of phases for each of the flows. For example, if the
packet includes an IPSec header, the configuration table may
indicate that the packet needs to be authenticated and forwarded.
Further, if an authentication needs ten processing phases and IP
forwarding needs one processing phase, the NP deduces that the
packet requires eleven processing phases.

In addition, if the processing cannot be subdivided into
logical phases for some specific flows, then it is still possible
to treat those flows as in current NPs. In particular, those flows
can be sent to other ordering domains by hashing the packet
header as in [16]. This type of ordering domain can coexist in
parallel with our processing-based reordering domains.

C. Knowledge Frameworks
Estimating the processing time of each packet can signif-

icantly help in reducing the average reordering delay. Never-
theless, in many cases such an estimation can only be realized
during, or at the end of the data processing.

In this section, we define three independent knowledge frame-
works regarding the time at which the NP knows about the
number of processing phases of each packet. In our discussions
with industry NP designers, we found that these frameworks
capture different assumptions and capabilities of NP vendors and
architectures. Our goal is to study the impact of each knowledge
framework on the complexity of the reordering algorithm and on
the resulting reordering delay. The following three frameworks
are ordered from the framework with more knowledge to the
framework with less knowledge, and therefore are expected to
result in an increasingly high reordering delay. This is confirmed
in simulations (Section VI).

The first framework assumes that there is a header parser
before load-balancing, thus ensuring a full knowledge of the
number of the phases of each packet before it is load-balanced
among the PEs. This framework is the simplest one to analyze,
and it conveys some intuition on the problems involved. It is
often adopted in the literature [24]–[29].

Framework 1: The number of processing phases of a packet
is known upon its arrival at the network processor.

In many cases, once a packet arrives at a PE, its first
processing phase includes packet classification, based on the
packet headers (including in some cases the application header)
[30]. This packet classification can help us in determining the
number of remaining processing phases, leading to a second



framework.
Framework 2: The total number of processing phases of a

packet is only known after its first processing phase.
In most cases, we would expect the total number of phases

to be known after the first processing phase. However, in cases
where the processing of the packet is performed recursively
without a predetermined number of iterations, as in MPLS or
PBB label encapsulation [31], it is hard to know the number
of processing phases in advance [32]. More generally, we can
introduce a third framework, in which we only know the number
of processing phases a packet has already gone through, but not
the number of remaining ones.

Framework 3: The PE only knows about the number of
processing phases a packet has already gone through, but
not about the number of remaining ones. Therefore, the total
number of processing phases of a packet is known only after its
processing is completed.

III. RP 3 ALGORITHM UNDER FRAMEWORK 1
In this section, we introduce our order-preserving RP 3

(Reordering Per Processing Phase) algorithm for Framework 1,
where the number of phases of each packet is known upon
packet arrival. Since Framework 1 provides full knowledge
of the number of phases, the resulting algorithm is relatively
simple, and will provide some intuition on the mechanism before
describing more complex algorithms under later frameworks with
limited knowledge.

Intuitively, the algorithm divides all the flows into subsets of
flows that require the same number of processing phases. The
goal is to avoid a case in which a packet belonging to a flow
with many processing phases blocks a packet belonging to a flow
with few processing phases at the reordering unit, as illustrated
in the Introduction. By reducing the amount of such blocking,
the algorithm decreases the reordering delay.

Figure 1 presents the RP 3 algorithm under Framework 1.
The algorithm relies on an architecture that includes Φ sequence-
number (SN) generators, and Φ ordering units (OUs). The φ-th
SN generator assigns the next SN for packets with φ processing
phases. The φ-th ordering unit tracks the latest released packet
with φ processing phases. Each ordering unit has N input
buffers, one per PE. Note that while the ordering units are
presented as separate for intuition, in practice they may be
implemented on a single core.

First, each packet is immediately assigned an SN upon
arrival, as shown in step (1) of Figure 1. In Framework 1, the
number of required processing phases φ of the packet is known
as soon as it arrives. Therefore, the SN of the packet is assigned
by the φ-th SN generator (step (2) in Figure 1), which also
increments its last assigned SN.

Next, the packet descriptor is sent by the load balancer to
some PE i. After finishing the processing in PE i, the packet
descriptor is placed in buffer i of ordering unit φ (step (3)). The
ordering unit can only release in-order packets. To do so, each
ordering unit φ checks if one of the N head-of-line packets in
its buffers has an SN equal to the next expected SN, i.e. to the
SN of the oldest packet in the NP with φ phases (step (4)). If
the condition is met, the packet can depart, and the expected SN
is incremented (step (5)). Else, the packets keep waiting for the
next expected packet.

Each ordering unit φ preserves the order of the packets that
require φ processing phases. Thus, reordering delay can only

Fig. 1. RP 3 Algorithm under Framework 1. Packets with a different number of
phases belong to different flows. Thus, they will not affect the reordering delay
of each other.

occur within those packets. For instance, assume that packets A
and B belong to two different flows with the same number of
logical processing phases, and A arrives to the NP before B, but
B has completed its processing earlier. Then B will wait for A
in order to depart, even though they belong to different flows,
because they have the same number of phases. As we will show
in simulations (Section VI), this reordering algorithm achieves
a significantly low reordering delay, and this is especially true
when the variability in the delay of each processing phase is low.

The RP 3 algorithm under Framework 2 is quite similar to
the described RP 3 algorithm under Framework 1, and therefore
we detail it in our online technical report [13].

IV. RP 3 ALGORITHM UNDER FRAMEWORK 3
A. Overview

Under Framework 3, the PEs only know the number of
processing phases a packet has already gone through, but not
the number of remaining ones.

Intuitively, the problem in Framework 3 is that a packet that
has completed its processing by going through φ processing
phases is blocked from departing the NP by all the packets
that have arrived earlier, have completed less than φ processing
phases, and are still in some PE. This is because all these other
packets may, or may not, eventually complete with exactly φ
processing phases, and therefore potentially belong to the same
flow. So the algorithm needs to monitor all these other packets
to determine whether the packet is free to go. This intrinsically
introduces three new problems in the RP 3 algorithm:

First, each packet now needs to go through several sequence-
number (SN) generators, since it doesn’t know its SN generator
in advance. For instance, assume a packet needs to complete φ
processing phases. Since it doesn’t know it before completion, it
will first ask for the first SN generator; then, for the second SN
generator, and so on, gradually discovering how many phases it
has.

A second new problem is that when a packet requests a
new SN, it cannot get it automatically anymore. Consider the
following example, which we later extend in Figure 3. Assume
that incoming packet A is assigned SN = 1 by the first SN
generator, and the next incoming packet B is assigned SN = 2
by the same first SN generator. Now, assume that packet B
completes its first processing phase, but packet A hasn’t yet. If
B needs to go through a second processing phase and requests
an SN from the second SN generator, which one should it get?



We do not know yet whether A will also request an SN from the
second SN generator, and therefore do not know if the second
SN for B should equal 1 or 2. Therefore, A blocks the SN-
granting process for B. More generally, the algorithm preserves
flow order by making sure to only increase the SN of the oldest
packet in the current sequence phase.

A third new problem is that we want to design our algorithm
so that each PE is work-conserving, i.e. each packet on each PE
can run-to-completion independently of the sequencing scheme.
As a consequence, the packet processing continues even if the
new SN is not granted yet. This makes the processing phases and
sequencing phases distinct. For instance, a packet may be in the
middle of the processing of phase 4, but its sequence number
may still belong to phase 2. While this makes the algorithm
more efficient, it also makes it significantly more complex to
understand.

We further denote as a sequence phase the time between
receiving two consecutive SN grants. Note that the final number
of sequence phases for a packet is equal to its total number of
required processing phases.

Let’s now formally describe the algorithm before providing
a clarifying example.

B. Algorithm Description
Figure 2 illustrates the RP 3 Algorithm under Framework 3.

Assume that the maximum possible number of processing phases
per packet is Φ. The architecture includes Φ SN generators, and
Φ ordering units (OUs) with N + 1 input queues, numbered 0
through N . The φ-th SN generator is responsible for preserving
the order of all the packets that are currently in the φ-th sequence
phase. The φ-th ordering unit holds the packets that have finished
processing and are currently within the φ-th sequence phase. A
packet sequence number is defined by the pair (φ : SNφ), where
the SN generator that assigns the sequence number is the φ-th
SN, and the sequence number that it assigns is SNφ.

Upon arrival, a packet is assigned a sequence number SN1

by the SN generator 1 (step (1) in Figure 2). It then joins the
queue of one of the PEs, as determined by the load-balancer.

After finishing the φ-th processing phase of the packet in the
PE, a request token with SNφ is sent to SN generator φ (step (2)
in Figure 2). The SN generator φ checks if the sequence number
SNφ of the request token is the minimal one, i.e. the oldest
sequence number of the packets in sequence phase φ. When the
condition is met, SNφ+1 is retrieved from SN generator φ + 1
and SNφ is released. A grant token with SNφ+1 is sent, and the
sequence number of the packet is updated (step (3)).

This completes a single sequence phase. When PE i finishes
processing the packet, the packet descriptor is sent to the input
queue i of the ordering unit φ, where φ is the number of passed
packet sequence phases (step (4)).

At this point, as mentioned, the current number of sequence
phases of the packet, i.e. the number of SN re-assignments of
the packet, may be smaller than the total number of processing
phases it needs to achieve. This is because the packet is waiting
for some SN grant token, due to some earlier-arrived packet that
has not yet completed processing. As we stated before, the final
number of sequence phases has to be equal to the total number
of processing phases. Thus, the packet will complete the needed
sequence phases in the ordering unit. (Such a case is further
illustrated in the example below with packet D.)

For each of the head-of-line packets in its input queues,

Fig. 2. RP 3 Algorithm under Framework 3. Each packet with φ required
processing phases also passes through φ sequencing phases. In each sequencing
phase, a request token is sent to the SN generator, and a grant token is received.
The SN generator sends a grant token only when the requested SN is equal to
the oldest SN counter. The generated grant token includes the next SN from the
next SN generator. The packet order is preserved for the packets in the same
sequencing phase.

ordering unit φ will send a request token to SN generator φ.
After receiving the grant token SNφ+1, the packet is pushed
to the input queue numbered 0 of ordering unit φ + 1. More
generally, input queue 0 is reserved for packets that completed
their sequence phase in another ordering unit, while input queues
1 to N are reserved for the packets that were pushed from the
PEs.

Finally, when the number of passed sequence phases is equal
to the total number of processing phases, the packet departs and
its sequence number is released (step (5)).

The next example illustrates and clarifies how the RP 3

algorithm works under Framework 3.
Example 1: Figure 3 shows an example of sequence number

assignment and the in-order transmission of the packets. Packets
A, B, C and D arrive to the NP in this order, and are processed
in parallel. Packets A and C require one processing phase
(φA = φC = 1), and may belong to the same flow. Packet
B requires three processing phases (φB = 3), and therefore
belongs to a different flow. Packet D requires two processing
phases (φD = 2), and belongs to yet another flow. Of course,
in Framework 3, the number of processing phases required by
each packet is unknown to the NP until packet processing is
completed. The rectangles in the figure present the completion
time of each processing phase. For instance, tA,1, tB,1 and tC,1
are the completion times of the first processing phase of packets
A, B and C, respectively.

Notice first that the first increment of the sequence number of
packet B happens only after incrementing the sequence number
of packet A (tA,1), and not immediately after finishing its first
processing phase (tB,1). This is because the SN generator cannot
assign the next SN to packet B as long as it does not know that
packet A will not need it.

In addition, once the processing of packet C completes after
one processing phase, it still needs to wait for tA,1 and tB,1 in
order to leave the NP. The reason is that as long as A and B do
not complete their first phase, the NP does not know whether A
and B need only one processing phase, in which case they may



Fig. 3. Sequence Numbering Example. Rectangles present the processing
phases, and double arrows illustrate the SN generators and values. A packet
sequence number is defined by the pair (φ : SNφ), where the SN generator
that assigns the sequence number is the φth SN, and the sequence number that
it assigns is SNφ. Packets A, B, C and D are processed in parallel. Packet C
can be transmitted only after A and B complete their first sequencing phase at
tA,1 and tB,1. The reordering delay in this case is equal to tA,1− tC,1. Packet
D completed its processing phases before completing its sequencing phases, and
waits for B to complete its second sequencing phase at tB,2.

belong to the same flow, or more processing phases, in which
case they definitely do not belong to the same flow. Of course,
packet C does not need to wait for tD,1, because packet D arrived
after packet C.

In this case, the reordering delay of packet C is equal
to tA,1 − tC,1. Note that with previously-known reordering
algorithms, the reordering delay of C could have been larger
and equal to tB,3 − tC,1, since C would have waited for the
processing completion of B. Also note that packet processing
is never preempted, even if the next sequence number cannot
be received, i.e. the suggested algorithm does not pause packet
processing in any case.

Finally, packet D finishes both its processing phases before
the increment of its sequence number, and is buffered in the
ordering unit. It can be transmitted only after packet B finishes
its second sequencing phase at time tB,2.

As mentioned, in our online technical report [13], we further
discuss the implementation overhead and prove the correctness
of the RP 3 algorithm. Specifically, we estimate the addional
control overhead as 40, 60 and 160 bits per packet in Framework
1, 2 and 3, respectively.

V. PERFORMANCE ANALYSIS MODEL
To provide more intuition on the efficiency of our RP 3

algorithm, we now analyze its reordering delay and total delay
as functions of the traffic arrival pattern and the processing delay
distribution. Specifically, we want to compare the RP 3 algorithm
against two baseline architectures:

Single SN algorithm: A commonly-implemented and
straightforward way to preserve packet order is to use a single
global sequence number (SN) generator. Each arriving packet is
simply stamped with an incremented sequence number. Then,
the reordering unit at the output link transmits only packets with
the oldest sequence number. Other packets keep waiting. We
will also later show that while this simple architecture is easy to
implement, it can cause high reordering delays, because packets

of one flow may need to wait for a long time for late packets of
a different flow.

Hashed SN algorithm [16]: As discussed in the related work,
it is also possible to statically aggregate flows into ordering
domains using hashing. We will use this algorithm as our second
baseline algorithm, and denote it as Hashed SN.

We start by defining the potential reordering delay of a
packet as the difference between its arrival time, and the latest
departure time of a previously-arrived packet that requires order
preservation. For example, consider two packets A and B, such
that their order needs to be preserved. Assume that B arrives at
tarr,B, and A departs at tdep,A. Then the potential reordering delay
of packet B is defined as max(tdep,A − tarr,B, 0).

Our goal is to present the cumulative distribution function
of the total delay TT , given the distributions of the processing
delay (Tproc) and of the potential reordering delay (TRO). We
make several simplifying assumptions. First, we assume that
the processing delay includes both the processing time and
the buffering time. We also assume that we can neglect the
transmission delay of the packets at the output. We further
assume that the processing delay and the potential reordering
delay follow independent distributions, and that the processing
delays of different packets are independent as well. Finally, we
assume a common slotted-time model [33].

The following lemma first describes a general delay model
that will be used in the later theorems.

Lemma 1: The distribution of the total packet delay can be
modeled as:

Pr(TT ≤ i) = Pr(Tproc ≤ i) · Pr(TRO ≤ i), (1)

where Pr(TRO ≤ i) depends on the arrival traffic pattern and on
the scheduling algorithm.

Proof: A packet B that completes processing at some time
t can depart iff there is no earlier packet A preventing it from
leaving at t; and if there is such a packet, it can only depart
when the last such bottleneck-packet A departs. In other words,
the actual departure time of B will be max(tdep,A, tdep,B) (where
tdep,B is the depature time of B when no reordering delay occurs,
i.e. end of processing of B). As mentioned, we neglect the
transmission delay of packet B at the output. Therefore, its total
time in the NP will be

TT = max(tdep,A, tdep,B)− tarr,B

= max(max(tdep,A − tarr,B, 0), Tproc)

= max(TRO, Tproc),

where the second max in the second line is of course superfluous.
Therefore, the independence of the random variables TRO and
Tproc yields the result.

The next theorems model the behavior of the algorithms
under Poisson arrivals of rate λ. We first analyze the behavior
of the Hashed SN algorithm, with m buckets in the hash table.
The behavior of the Single SN algorithm is easily derived using
m = 1.

Theorem 1: Under Poisson-distributed traffic arrivals with
total arrival rate of λ packets per time-slot, the total packet delay
distribution under the Hashed SN reordering algorithm satisfies:

Pr(TT ≤ i) = Pr(Tproc ≤ i) · exp(− λ
m

∞∑
j=1

(Pr(Tproc > i+ j))).

(2)



Proof: Following Lemma 1, we only need to focus on the
second part of the right-hand side, i.e. on the reordering time.
Consider some packet B that arrives at time t, and let’s find the
probability that it is not blocked by an earlier packet beyond
time t+ i due to reordering. First, at the earlier slot (t− j), the
probability that exactly k packets arrive to the same bucket is
fP ( λm , k), according to the Poisson distribution. The processing
of each of these packets is delayed beyond t + i and causes
potential reordering delay with probability (1−Pr(Tproc ≤ i+j)),
since (t+ i)− (t− j) = i+ j time slots need to pass. The result
follows by multiplying all the probabilities that there is no such
late blocking packet from slot (t−j) over all such possible slots:

Pr(TT ≤ i) = Pr(Tproc ≤ i)·
∞∏
j=1

(
1−

∞∑
k=1

fP

(
λ

m
, k

)
(1− (Pr(Tproc ≤ i+ j))k)

)
,

(3)

where fP (λ, k) = λke−λ/k! is the Poisson-distributed probabil-
ity for the arrival of k packets in a time slot. Using Taylor series
function ex =

∑∞
n=0

xn

n! we get the result. Ref. [13] includes
the detailed proof of the theorem.

We now introduce models of the total delay in the RP 3

algorithm under Frameworks 1 and 3 (the detailed proofs are in
[13]). To do so, we denote T ′proc(φ) as the sum of the processing
delays of the first φ processing phases of a packet.

Theorem 2: Under a Poisson-distributed traffic arrivals with
total arrival rate of λ packets per time-slot, the distribution of
the total packet delay with the RP 3 reordering algorithm under
Framework 1 can be modeled as:

Pr(TT ≤ i) =
∑
φ0

Pr(φ = φ0) · Pr(T ′proc(φ0) ≤ i)·

exp (−λ
∞∑
j=1

Pr(T ′proc(φ0) > i+ j)), (4)

Theorem 3: Under Poisson-distributed traffic arrivals with a
total arrival rate of λ packets per time-slot, the total packet delay
distribution under RP 3 for Framework 3 satisfies:

Pr(TT ≤ i) =
∑
φ0

Pr(φ = φ0) · Pr(T ′proc(φ0) ≤ i)·

e
−λ

∑∞
j=1

(
1−

∑∞
φ′=1

Pr(φj=φ
′)·Pr(T ′

proc(min(φ0,φ
′))≤i+j)

)
.

Incidentally, note that the presented expressions in this
section contain infinite products, but all of them converge in
practice. In particular, the Poisson probabilities decrease expo-
nentially fast for large k, and the number of phases is typically
bounded.

VI. SIMULATIONS
A. Simulation Settings

To evaluate our suggested algorithms, we simulate a parallel
network processor with N = 16 cores. The NP provides a
pull-based I/O interface in which incoming packets are stored
in a shared input queue serving all the PEs, thus achieving an
efficient load-balancing. Related architectures are reported to be
implemented in the Cisco QuantumFlow [11] and EZChip NP-4
[9].

We implement our RP 3 algorithm under the three frame-
works. We further compare it against our two baseline algo-
rithms, Single SN and Hashed SN. We also compute a reordering
delay lower-bound, achieved using an idealized algorithm that
would keep a per-flow sequence numbering mechanism. Time is
continuous, and reordering delay is measured in time units.

To analyze the performance of our algorithms, we start by
using a synthetic traffic arrival pattern. We assume that packet
arrivals follow a Poisson distribution. Packets are distributed
across 300 flows. The distribution of the flows is assumed to
follow a power law (Zipf-distributed with exponent s = 1)
[34]. For each flow, the number of logical processing phases
for all of its packets is chosen uniformly over the [1, 10]
interval. Moreover, for a fair comparison, when implementing
the Hashed-SN algorithm, the flows are hashed into 10 hash
buckets. Note that we use a real hash function implementation
[35], and not simply a random number generator.

Next we want to verify the impact of the delay variability
of the logical processing phases on the performance of our
RP 3 algorithms. Intuitively, we would expect our algorithms
to perform better when delay variability is low. We add to our
simulations a lower bound delay graph, which is the reordering
delay obtained by a perfect reordering algorithm in which a
packet can endure a reordering delay due to other packet of
the same flow only. In our simulations, phase delay variability
model, while keeping the mean processing time for each phase
at 100 time units. In this model, we assume that the processing
time for each phase is uniformly distributed over some interval.
Specifically, we define the phase processing delay variability as
the ratio between the maximal and minimal processing time for
a single phase. Each processing phase delay is then uniformly
distributed between the minimum and the maximum values, with
an average of 100 time units. For instance, a phase processing
delay variability of 3 corresponds to a factor of 3 between the
minimum and the maximum, i.e. the minimum is 50 and the
maximum is 150. A packet with two phases would consecutively
draw two such uniformly-distributed random variables.

B. Traffic Load
Figure 4 illustrates the impact of traffic load on reordering

delay under the two variability models. First, we use a phase
variability model with phase processing delay variability of
2. As shown, the proposed RP 3 algorithms outperform both
baseline algorithms. In particular, the RP 3 algorithms reduce the
reordering delay by at least an order of magnitude compared to
Hashed SN. Note that the results for RP 3 for Framework 1 and
Framework 2 appear near-identical throughout the simulations,
and therefore they are presented as a unique algorithm. Finally,
the lower bound gets positive values due to the phase processing
variability.

C. Phase Processing Delay Variability
We then check the performance of the RP 3 algorithms under

increasing processing delay variability, using the phase variabil-
ity model . As shown in Figure 5, we vary the phase processing
delay variability value from 1x to 10x under a traffic load of 90%.
As mentioned before, the correctness of our proposed algorithms
is not affected by these variations. However, it is clear that their
relative performance is reduced as the variability increases. Still,
even with a 10x variability and the unfavourable Framework 3,
our RP 3 algorithm interestingly keeps yielding a better result
than the two baseline algorithms.



Fig. 4. Impact of load on reordering delay assuming a phase delay variability
of 2, i.e. a phase delay in (67, 133).

Fig. 5. Impact of delay variability under a load of 90% in the phase variability
model.

D. Real-life Trace Simulations
We next run a set of simulations using a real-life traffic trace

from CAIDA [36]. In order to evaluate the processing delay for
each packet we assume that each packet is being processed for
IP forwarding. We use results from Figure 9 in [37] in order to
predict the processing delay of the IP forwarding as a function of
packet length. We extrapolate the delay measurements presented
in [37] as:

Delay[µs] = 0.266 · length[bytes] + 200 (5)

We use the two variability models. In the phase variability model,
the PE variation is chosen according to Figures 3(a), (c) and (e)
in [37] as approximately equal to 1.22x.

Note that in the trace the lengths of all the packets of the same
flow are approximately equal, and therefore by Equation (5) also
their processing delays. Thus, when grouping packets by their
processing delays, the packets of given flows naturally belonged
to the same ordering domains in the simulation, without any need
for adding dummy phases. This nicely matched our assumptions
without any need for additional tweaks.

Figure 6 presents the simulation results for the average re-
ordering delay as a function of the load, under a phase variability
model. In all simulations our RP 3 algorithm outperforms the
compared Single-SN and Hashed-SN algorithms. The similarity
between all the plots in spite of the different models suggests a
relative robustness of our algorithms.

E. Model Evaluation
We also run simulations in order to evaluate our models. The

models are checked by simulations with Poisson traffic of arrival
rate λ = 1. The number of phases per packet is assumed to be
distributed uniformly and geometrically (with p = 0.5) between

Fig. 6. Real-life trace: Impact of load on reordering delay assuming a phase
delay variability of 2, i.e. a phase delay in (67,133))

(a) Poisson arrivals, geometric pro-
cessing delay distribution.

(b) Poisson arrivals, uniform process-
ing delay distribution.

Fig. 7. Model vs. Simulation. PDF/histogram of the delay under Hashed SN

(a) Poisson arrivals, geometric pro-
cessing delay distribution.

(b) Poisson arrivals, uniform process-
ing delay distribution.

Fig. 8. Model vs. Simulation. PDF/histogram of the delay under RP 3 for
Framework 1

(a) Poisson arrivals, geometric pro-
cessing delay distribution.

(b) Poisson arrivals, uniform process-
ing delay distribution.

Fig. 9. Model vs. Simulation. PDF/histogram of the delay under RP 3 for
Framework 3

1 and 5. In the Hashed SN and the RP 3 algorithms, the flows
are distributed among 5 buckets. We validate our models given a
phase variability model. We set the phase processing variability
to a factor of 3x (phase delay in (50,150)).

Figures 7, 8 and 9 compare the model and the simulation
results for the Single SN, Hashed SN, RP 3 for Framework 1
and RP 3 for Framework 3 algorithms, respectively. The model
fits simulations well in all cases. The simulations present some



difference with the model due to the fact that in the simulations
the arrivals use a continuous time, while the model relies on
a discrete-time approximation, as well as due to the model
assumptions. Note that the buffering delay appeared negligible
in the simulations.

VII. CONCLUSION
In this paper, we introduced novel reordering algorithms for

parallel multi-core network processors that reduce reordering
delays without any meaningful additional cost of implementa-
tion. The algorithms are scalable and can be implemented over
general-purpose processors. We relied on the fact that all packets
of a given flow have similar required processing functions, and
therefore that we can divide these into an equal number of
logical processing phases. We then introduced three frameworks
that define the stages at which the NP learns about the number
of processing phases: as packets arrive, or as they start being
processed, or as they complete processing. In each framework,
we introduced a specific reordering algorithm and provided a
theoretical model. Finally, we analyzed these algorithms using
NP simulations, and found that reordering delays are negligible,
both under synthetic traffic and real-life traces. We also showed
how a lower variability in the delays of the logical processing
phases leads to significant improvements in the performance of
our algorithms.
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